krn-7000 and Cell-Transformation--Neoplastic

krn-7000 has been researched along with Cell-Transformation--Neoplastic* in 2 studies

Other Studies

2 other study(ies) available for krn-7000 and Cell-Transformation--Neoplastic

ArticleYear
Suppressed rate of carcinogenesis and decreases in tumour volume and lung metastasis in CXCL14/BRAK transgenic mice.
    Scientific reports, 2015, Mar-13, Volume: 5

    Cancer progression involves carcinogenesis, an increase in tumour size, and metastasis. Here, we investigated the effect of overexpressed CXC chemokine ligand 14 (CXCL14) on these processes by using CXCL14/BRAK (CXCL14) transgenic (Tg) mice. The rate of AOM/DSS-induced colorectal carcinogenesis in these mice was significantly lower compared with that for isogenic wild type C57BL/6 (Wt) mice. When tumour cells were injected into these mice, the size of the tumours that developed and the number of metastatic nodules in the lungs of the animals were always significantly lower in the Tg mice than in the Wt ones. Injection of anti-asialo-GM1 antibodies to the mice before and after injection of tumour cells attenuated the suppressing effects of CXCL14 on the tumor growth and metastasis, suggesting that NK cell activity played an important role during CXCL14-mediated suppression of tumour growth and metastasis. The importance of NK cells on the metastasis was also supported when CXCL14 was expressed in B16 melanoma cells. Further, the survival rates after tumour cell injection were significantly increased for the Tg mice. As these Tg mice showed no obvious abnormality, we propose that CXCL14 to be a promising molecular target for cancer suppression/prevention.

    Topics: Animals; Antigens, Ly; Autoantibodies; Cell Transformation, Neoplastic; Chemokines, CXC; Chronic Disease; Colitis; Disease Models, Animal; Female; G(M1) Ganglioside; Galactosylceramides; Killer Cells, Natural; Lung Neoplasms; Lymphocyte Depletion; Melanoma, Experimental; Mice; Mice, Transgenic; Neoplasms; NK Cell Lectin-Like Receptor Subfamily B; Tumor Burden

2015
Natural Killer Dendritic Cells Enhance Immune Responses Elicited by α -Galactosylceramide-Stimulated Natural Killer T Cells.
    BioMed research international, 2013, Volume: 2013

    Natural killer dendritic cells (NKDCs) possess potent anti-tumor activity, but the cellular effect of NKDC interactions with other innate immune cells is unclear. In this study, we demonstrate that the interaction of NKDCs and natural killer T (NKT) cells is required for the anti-tumor immune responses that are elicited by α -galactosylceramide ( α -GC) in mice. The rapid and strong expression of interferon- γ by NKDCs after α -GC stimulation was dependent on NKT cells. Various NK and DC molecular markers and cytotoxic molecules were up-regulated following α -GC administration. This up-regulation could improve NKDC presentation of tumor antigens and increase cytotoxicity against tumor cells. NKDCs were required for the stimulation of DCs, NK cells, and NKT cells. The strong anti-tumor immune responses elicited by α -GC may be due to the down-regulation of regulatory T cells. Furthermore, the depletion of NKDCs dampened the tumor clearance mediated by α -GC-stimulated NKT cells in vivo. Taken together, these results indicate that complex interactions of innate immune cells might be required to achieve optimal anti-tumor immune responses during the early stages of tumorigenesis.

    Topics: Animals; Antigens, Neoplasm; Cell Transformation, Neoplastic; Cytokines; Dendritic Cells; Galactosylceramides; Immunity, Cellular; Killer Cells, Natural; Lung Neoplasms; Mice; Mice, Inbred C57BL

2013