krn-7000 has been researched along with Atherosclerosis* in 3 studies
1 review(s) available for krn-7000 and Atherosclerosis
Article | Year |
---|---|
Therapeutic manipulation of natural killer (NK) T cells in autoimmunity: are we close to reality?
T cells reactive to lipids and restricted by major histocompatibility complex (MHC) class I-like molecules represent more than 15% of all lymphocytes in human blood. This heterogeneous population of innate cells includes the invariant natural killer T cells (iNK T), type II NK T cells, CD1a,b,c-restricted T cells and mucosal-associated invariant T (MAIT) cells. These populations are implicated in cancer, infection and autoimmunity. In this review, we focus on the role of these cells in autoimmunity. We summarize data obtained in humans and preclinical models of autoimmune diseases such as primary biliary cirrhosis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, psoriasis and atherosclerosis. We also discuss the promise of NK T cell manipulations: restoration of function, specific activation, depletion and the relevance of these treatments to human autoimmune diseases. Topics: Animals; Arthritis, Rheumatoid; Atherosclerosis; Autoimmunity; Clinical Trials, Phase I as Topic; Diabetes Mellitus, Type 1; Female; Galactosylceramides; Humans; Liver Cirrhosis, Biliary; Lupus Erythematosus, Systemic; Male; Mice; Multiple Sclerosis; Natural Killer T-Cells; Psoriasis | 2013 |
2 other study(ies) available for krn-7000 and Atherosclerosis
Article | Year |
---|---|
Natural Killer T Cells Are Involved in Atherosclerotic Plaque Instability in Apolipoprotein-E Knockout Mice.
The infiltration and activation of macrophages as well as lymphocytes within atherosclerotic lesion contribute to the pathogenesis of plaque rupture. We have demonstrated that invariant natural killer T (iNKT) cells, a unique subset of T lymphocytes that recognize glycolipid antigens, play a crucial role in atherogenesis. However, it remained unclear whether iNKT cells are also involved in plaque instability. Apolipoprotein E (apoE) knockout mice were fed a standard diet (SD) or a high-fat diet (HFD) for 8 weeks. Moreover, the SD- and the HFD-fed mice were divided into two groups according to the intraperitoneal injection of α-galactosylceramide (αGC) that specifically activates iNKT cells or phosphate-buffered saline alone (PBS). ApoE/Jα18 double knockout mice, which lack iNKT cells, were also fed an SD or HFD. Plaque instability was assessed at the brachiocephalic artery by the histological analysis. In the HFD group, αGC significantly enhanced iNKT cell infiltration and exacerbated atherosclerotic plaque instability, whereas the depletion of iNKT cells attenuated plaque instability compared to PBS-treated mice. Real-time PCR analyses in the aortic tissues showed that αGC administration significantly increased expressional levels of inflammatory genes such as IFN-γ and MMP-2, while the depletion of iNKT cells attenuated these expression levels compared to those in the PBS-treated mice. Our findings suggested that iNKT cells are involved in the exacerbation of plaque instability via the activation of inflammatory cells and upregulation of MMP-2 in the vascular tissues. Topics: Animals; Atherosclerosis; Brachial Artery; Cell Movement; Diet, High-Fat; Galactosylceramides; Gene Expression Regulation; Interferon-gamma; Killer Cells, Natural; Lymphocyte Activation; Macrophages; Male; Matrix Metalloproteinase 2; Mice; Mice, Inbred C57BL; Mice, Knockout, ApoE; Plaque, Atherosclerotic | 2021 |
Effect of natural killer T cell activation on the initiation of atherosclerosis.
It has been shown that natural killer T (NKT) cell activation accelerates atherosclerosis in apoE(-/-) mice. ApoE is, however, an important mediator in the presentation of lipids which may complicate conclusions on the role of NKT cells in atherosclerosis. Treatment of LDLr(-/-) mice with alpha-GalCer during Western-type diet feeding is therefore of interest. Atherosclerosis was induced by Western-type diet feeding and collar placement around the carotid arteries in both LDLr(-/-) and apoE(-/-) mice. Subsequently, the mice were treated twice a week with alpha-GalCer. This resulted in an 84% reduction in plaque size in LDLr(-/-) mice (P < 0.05), while no effect was observed in apoE(-/-) mice. In-vitro incubation of splenocytes with alpha-GalCer showed that LDLr(-/-) splenocytes proliferated stronger than apoE(-/-) splenocytes. This is reflected in a larger increase in production of cytokines and especially IL-10 after in-vitro stimulation with alpha-GalCer in LDLr(-/-) mice compared with apoE(-/-) splenocytes. Additionally, feeding a Western-type diet for 1.5 weeks induced a strong increase in the number of NKT cells in LDLr(-/-) mice and this increase was slower and less prominent in apoE(-/-) mice. Administration of alpha-GalCer to LDLr(-/-) mice in combination with Western-type diet feeding reduced plaque formation, but this effect was not seen in apoE(-/-) mice. This may be explained by the decreased presentation of lipids on CD1d molecules due to the lack of apoE. In this study we proved for the first time that NKT cells may also act in an atheroprotective manner. Topics: Animals; Apolipoproteins E; Atherosclerosis; Carotid Artery Diseases; Cytokines; Diet, Atherogenic; Disease Models, Animal; Galactosylceramides; In Vitro Techniques; Lymphocyte Activation; Male; Mice; Mice, Knockout; Natural Killer T-Cells; Receptors, LDL | 2009 |