krn-633 and Retinopathy-of-Prematurity

krn-633 has been researched along with Retinopathy-of-Prematurity* in 3 studies

Other Studies

3 other study(ies) available for krn-633 and Retinopathy-of-Prematurity

ArticleYear
Changes in components of the neurovascular unit in the retina in a rat model of retinopathy of prematurity.
    Cell and tissue research, 2020, Volume: 379, Issue:3

    An impairment of cellular interactions between the elements of the neurovascular unit contributes to the onset and/or progression of retinal diseases. The present study aims to examine how elements of the neurovascular unit are altered in a rat model of retinopathy of prematurity (ROP). Neonatal rats were treated subcutaneously with the vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitor KRN633 (10 mg/kg) on postnatal day (P) 7 and P8 to induce ROP. Morphological assessments were performed of blood vessels, astrocytes and neuronal cells in the retina. Aggressive angiogenesis, tortuous arteries and enlarged veins were observed in the retinal vasculature of KRN633-treated (ROP) rats from P14 to P28, compared to age-matched control (vehicle-treated) animals. Morphological abnormalities in the retinal vasculature showed a tendency toward spontaneous recovery from P28 to P35 in ROP rats. Immunofluorescence staining for glial fibrillary acidic protein and Pax2 (astrocyte markers) revealed that morphological changes to and a reduction in the number of astrocytes occurred in ROP rats. The developmental cell death was slightly accelerated in ROP rats; however, no visible changes in the morphology of retinal layers were observed on P35. The abnormalities in astrocytes might contribute, at least in part, to the formation of abnormal retinal blood vessels and the pathogenesis of ROP.

    Topics: Animals; Disease Models, Animal; Female; Phenylurea Compounds; Pregnancy; Protein Kinase Inhibitors; Quinazolines; Rats; Rats, Sprague-Dawley; Retina; Retinal Neovascularization; Retinopathy of Prematurity; Vascular Endothelial Growth Factor A

2020
Retinal neuronal cell loss prevents abnormal retinal vascular growth in a rat model of retinopathy of prematurity.
    Experimental eye research, 2018, Volume: 168

    A short-term blockade of the vascular endothelial growth factor (VEGF)-mediated pathway in neonatal rats results in formation of severe retinopathy of prematurity (ROP)-like retinal blood vessels. The present study aimed to examine the role of retinal neurons in the formation of abnormal retinal blood vessels. Newborn rats were treated subcutaneously with the VEGF receptor tyrosine kinase inhibitor, KRN633 (10 mg/kg), or its vehicle (0.5% methylcellulose in water) on postnatal day (P) 7 and P8. To induce excitotoxic loss of retinal neurons, N-methyl-D-aspartic acid (NMDA) was injected into the vitreous chamber of the eye on P9. Changes in retinal morphology, blood vessels, and proliferative status of vascular cells were evaluated on P11 and P14. The number of cells in the ganglion cell layer and the thickness of the inner plexiform layer and inner nuclear layer were significantly decreased 2 days (P11) after NMDA treatment. The pattern and degree of NMDA-induced changes in retinal morphology were similar between vehicle-treated (control) and KRN633-treated (ROP) rats. In ROP rats, increases in the density of capillaries, the tortuosity index of arteries, and the proliferating vascular cells were observed on P14. The expansion of the endothelial cell network was prevented, and the capillary density and the number of proliferating cells were reduced in NMDA-treated retinas of both control and ROP rats. Following NMDA-induced neuronal cell loss, no ROP-like blood vessels were observed in the retinas. These results suggest that retinal neurons play an important role in the formation of normal and ROP-like retinal blood vessels.

    Topics: Animals; Capillaries; Cell Proliferation; Disease Models, Animal; N-Methylaspartate; Phenylurea Compounds; Protein Kinase Inhibitors; Quinazolines; Rats; Rats, Sprague-Dawley; Retina; Retinal Ganglion Cells; Retinal Neurons; Retinal Vessels; Retinopathy of Prematurity; Vascular Endothelial Growth Factor A

2018
Short-term treatment with VEGF receptor inhibitors induces retinopathy of prematurity-like abnormal vascular growth in neonatal rats.
    Experimental eye research, 2016, Volume: 143

    Retinal arterial tortuosity and venous dilation are hallmarks of plus disease, which is a severe form of retinopathy of prematurity (ROP). In this study, we examined whether short-term interruption of vascular endothelial growth factor (VEGF) signals leads to the formation of severe ROP-like abnormal retinal blood vessels. Neonatal rats were treated subcutaneously with the VEGF receptor (VEGFR) tyrosine kinase inhibitors, KRN633 (1, 5, or 10 mg/kg) or axitinib (10 mg/kg), on postnatal day (P) 7 and P8. The retinal vasculatures were examined on P9, P14, or P21 in retinal whole-mounts stained with an endothelial cell marker. Prevention of vascular growth and regression of some preformed capillaries were observed on P9 in retinas of rats treated with KRN633. However, on P14 and P21, density of capillaries, tortuosity index of arterioles, and diameter of veins significantly increased in KRN633-treated rats, compared to vehicle (0.5% methylcellulose)-treated animals. Similar observations were made with axitinib-treated rats. Expressions of VEGF and VEGFR-2 were enhanced on P14 in KRN633-treated rat retinas. The second round of KRN633 treatment on P11 and P12 completely blocked abnormal retinal vascular growth on P14, but thereafter induced ROP-like abnormal retinal blood vessels by P21. These results suggest that an interruption of normal retinal vascular development in neonatal rats as a result of short-term VEGFR inhibition causes severe ROP-like abnormal retinal vascular growth in a VEGF-dependent manner. Rats treated postnatally with VEGFR inhibitors could serve as an animal model for studying the mechanisms underlying the development of plus disease.

    Topics: Animals; Animals, Newborn; Axitinib; Disease Models, Animal; Female; Fluorescent Antibody Technique, Indirect; Imidazoles; Indazoles; Microscopy, Fluorescence; Phenylurea Compounds; Pregnancy; Protein-Tyrosine Kinases; Quinazolines; Rats; Rats, Sprague-Dawley; Retinal Neovascularization; Retinal Vessels; Retinopathy of Prematurity; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factor Receptor-2

2016