koumine and Diabetes-Mellitus

koumine has been researched along with Diabetes-Mellitus* in 2 studies

Other Studies

2 other study(ies) available for koumine and Diabetes-Mellitus

ArticleYear
Basolateral amygdala astrocytes modulate diabetic neuropathic pain and may be a potential therapeutic target for koumine.
    British journal of pharmacology, 2023, Volume: 180, Issue:10

    New remedies are required for the treatment of diabetic neuropathic pain (DNP) due to insufficient efficacy of available therapies. Here, we used chemogenetic approaches combined with in vivo pharmacology to elucidate the role of basolateral amygdala (BLA) astrocytes in DNP pathogenesis and provide new insights into therapeutic strategies for DNP.. A streptozotocin-induced DNP model was established. Designer receptors exclusively activated by designer drugs (DREADDs) were used to regulate astrocyte activity. Mechanical hyperalgesia was assessed using the electronic von Frey test. Anxiety-like behaviours were detected using open field and elevated plus maze tests. Astrocytic activity was detected by immunofluorescence, and cytokine content was determined by ELISA.. BLA astrocytes were regulated by DREADDs, and inhibition of BLA astrocytes attenuated mechanical allodynia and pain-related negative emotions in DNP rats. In contrast, temporary activation of BLA astrocytes induced allodynia without anxious behaviours in naive rats. In addition, koumine (KM) alleviated mechanical allodynia and anxiety-like behaviours in DNP rats, inhibited the activation of BLA astrocytes and suppressed the inflammatory response. Furthermore, persistent activation of BLA astrocytes through chemogenetics mimicked chronic pain, and KM alleviated the pain hypersensitivity and anxiety-like behaviours.. DREADDs bidirectionally regulate the activity of BLA astrocytes, which proves for the first time the role of BLA astrocyte activation in the pathogenesis of DNP and represents a novel therapeutic strategy for DNP. KM ameliorates DNP, perhaps by inhibiting the activation of BLA astrocytes and reveal KM as a potential candidate for treating DNP.

    Topics: Animals; Astrocytes; Basolateral Nuclear Complex; Diabetes Mellitus; Hyperalgesia; Neuralgia; Rats

2023
Koumine modulates spinal microglial M1 polarization and the inflammatory response through the Notch-RBP-Jκ signaling pathway, ameliorating diabetic neuropathic pain in rats.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2021, Volume: 90

    Diabetic neuropathic pain (DNP), a complication of diabetes, has serious impacts on human health. As the pathogenesis of DNP is very complex, clinical treatments for DNP is limited. Koumine (KM) is an active ingredient extracted from Gelsemium elegans Benth. that exerts an inhibitory effect on neuropathic pain (NP) in several animal models.. To clarify the anti-NP effect of KM on rats with DNP and the molecular mechanisms involving the Notch- Jκ recombination signal binding protein (RBP-Jκ) signaling pathway.. Male Sprague-Dawley rats were administered streptozocin (STZ) by intraperitoneal injection to induce DNP. The effect of KM on mechanical hyperalgesia in rats with DNP was evaluated using the Von Frey test. Microglial polarization in the spinal cord was examined using western blotting and quantitative real-time PCR. The Notch-RBP-Jκ signaling pathway was analysed using western blotting.. KM attenuated DNP during the observation period. In addition, KM alleviated M1 microglial polarization in STZ-induced rats. Subsequent experiments revealed that Notch-RBP-Jκ signaling pathway was activated in the spinal cord of rats with DNP, and the activation of this pathways was decreased by KM. Additionally, KM-mediated analgesia and deactivation of the Notch-RBP-Jκ signaling pathway were inhibited by the Notch signaling agonist jagged 1, indicating that the anti-DNP effect of KM may be regulated by the Notch-RBP-Jκ signaling pathway.. KM is a potentially desirable candidate treatment for DNP that may inhibit microglial M1 polarization through the Notch-RBP-Jκ signaling pathway.

    Topics: Animals; Cell Polarity; Diabetes Mellitus; Immunoglobulin J Recombination Signal Sequence-Binding Protein; Indole Alkaloids; Male; Microglia; Neuralgia; Rats; Rats, Sprague-Dawley; Receptors, Notch; Signal Transduction

2021