knk-437 and Nerve-Degeneration

knk-437 has been researched along with Nerve-Degeneration* in 1 studies

Other Studies

1 other study(ies) available for knk-437 and Nerve-Degeneration

ArticleYear
Knocking out C9ORF72 Exacerbates Axonal Trafficking Defects Associated with Hexanucleotide Repeat Expansion and Reduces Levels of Heat Shock Proteins.
    Stem cell reports, 2020, 03-10, Volume: 14, Issue:3

    In amyotrophic lateral sclerosis (ALS) motor neurons (MNs) undergo dying-back, where the distal axon degenerates before the soma. The hexanucleotide repeat expansion (HRE) in C9ORF72 is the most common genetic cause of ALS, but the mechanism of pathogenesis is largely unknown with both gain- and loss-of-function mechanisms being proposed. To better understand C9ORF72-ALS pathogenesis, we generated isogenic induced pluripotent stem cells. MNs with HRE in C9ORF72 showed decreased axonal trafficking compared with gene corrected MNs. However, knocking out C9ORF72 did not recapitulate these changes in MNs from healthy controls, suggesting a gain-of-function mechanism. In contrast, knocking out C9ORF72 in MNs with HRE exacerbated axonal trafficking defects and increased apoptosis as well as decreased levels of HSP70 and HSP40, and inhibition of HSPs exacerbated ALS phenotypes in MNs with HRE. Therefore, we propose that the HRE in C9ORF72 induces ALS pathogenesis via a combination of gain- and loss-of-function mechanisms.

    Topics: Amyotrophic Lateral Sclerosis; Apoptosis; Axons; Benzhydryl Compounds; C9orf72 Protein; Cell Differentiation; Cytoplasmic Granules; DNA Repeat Expansion; Gain of Function Mutation; Gene Knockout Techniques; HSP40 Heat-Shock Proteins; HSP70 Heat-Shock Proteins; Humans; Induced Pluripotent Stem Cells; Models, Biological; Motor Neurons; Nerve Degeneration; Pyrrolidinones; Transcriptome

2020