knk-437 has been researched along with Disease-Models--Animal* in 3 studies
3 other study(ies) available for knk-437 and Disease-Models--Animal
Article | Year |
---|---|
Effects of HIP in protection of HSP70 for stress-induced cardiomyocytes injury and its glucorticoid receptor pathway.
Moderate levels of stress can be beneficial to health, while stress overload can cause injury or contribute to diseases. Despite a number of studies of adaptation or stress damage, the mechanisms of adaptation and stress damage remain far from clear. The effect and mechanisms of adaptation on cardiomyocytes damage caused by stress overload are discussed in this study. Data showed that mild repeated stress mitigated stress overload-induced cardiomyocyte injury both in an animal model of restraint stress and in H9C2 cells with GC (glucocorticoid) treatment. HSP70, HIP expression and interaction between HSP70 and HIP increased during adaptation induced by mild stress both in animals and H9C2 cells. Overexpression or inhibition of HSP70 in H9C2 cells with pCDNA-3.1-Hsp70 or KNK437 (HSP70 inhibitor) showed that HSP70 can protect H9C2 cells from GC-induced cell damage. A luciferase assay showed that Hsp70 plays its protective role through inhibition of GR transcription activity dependent on the interaction with HIP. These results indicated that HSP70 may promote adaptation with its interacting protein HIP, and increased levels of HSP70 and its interacting protein HIP during adaptation may play a protective role on stress-overload-induced cardiomyocyte injury. Topics: Adaptation, Physiological; Animals; Benzhydryl Compounds; Cell Line; Disease Models, Animal; Glucocorticoids; Heart Diseases; HSP70 Heat-Shock Proteins; Hydrocortisone; Male; Molecular Chaperones; Myocytes, Cardiac; Pyrrolidinones; Rats, Wistar; Receptors, Glucocorticoid; Restraint, Physical; RNA Interference; Signal Transduction; Stress, Psychological; Time Factors; Transfection | 2014 |
Heat shock cognate protein 70 is essential for Akt signaling in endothelial function.
Heat shock protein 70s (Hsp70s) are molecular chaperones that protect cells from damage in response to various stress stimuli. However, the functions and mechanisms in endothelial cells (ECs) have not been examined. Herein, we investigate the role of Hsp70s, including heat shock cognate protein 70 (Hsc70), which is constitutively expressed in nonstressed cells (ie, ECs).. The Hsp70 inhibitor, KNK437, significantly decreased vascular endothelial growth factor (VEGF)-induced cell migration and tube formation in vitro. KNK437 inhibited the phosphorylation of VEGF-induced Akt and endothelial nitric oxide synthase (eNOS) in human umbilical vein endothelial cells. In a mouse hind limb model of vascular insufficiency, intramuscular inhibition of Hsp70s attenuated collateral and capillary vessel formation. Silencing the Hsc70 gene by short interfering RNA abolished VEGF-induced Akt phosphorylation and VEGF-stimulated human umbilical vein endothelial cell migration and tube formation. As the molecular mechanisms, Hsc70 knockdown reduced the expression of phosphatidylinositol 3-kinase.. Collectively, Hsc70 plays a significant role in ECs via the phosphatidylinositol 3-kinase/Akt pathway. Hsc70 may provide the basis for the development of new therapeutic strategies for angiogenesis. Topics: Animals; Benzhydryl Compounds; Cell Movement; Cells, Cultured; Disease Models, Animal; Endothelium, Vascular; Hindlimb; HSC70 Heat-Shock Proteins; Humans; Ischemia; Male; Mice; Mice, Inbred C57BL; Neovascularization, Physiologic; Nitric Oxide Synthase Type III; Phosphatidylinositol 3-Kinases; Phosphorylation; Proto-Oncogene Proteins c-akt; Pyrrolidinones; Signal Transduction; Vascular Endothelial Growth Factor A | 2010 |
Intracellular or extracellular heat shock protein 70 differentially regulates cardiac remodelling in pressure overload mice.
Innate and adaptive immune responses are associated with the development of hypertension-induced myocardial hypertrophy and fibrosis. As a result, we investigated whether heat shock protein (HSP) 70, which is a molecule of damage-associated molecular patterns, could induce inflammation in the myocardium and promote the development of hypertension-induced cardiac hypertrophy and fibrosis.. We found that HSP70 serum levels, as well as the amount of HSP70 translocation to the cardiomyocyte membranes and the interstitial space, were elevated in the hypertensive mice caused by abdominal aortic constriction (AAC). Transcriptional inhibition of HSP70 expression by a specific heat shock transcript factor inhibitor, KNK437, reduced the serum level, and the re-distribution of HSP70. It promoted myocardial hypertrophy and cardiac dysfunctions although it protected animals from AAC-induced cardiac fibrosis. On the other hand, the functional antagonism of HSP70 by an anti-HSP70 antibody attenuated AAC-induced cardiac hypertrophy and fibrosis without adverse haemodynamic effects. The cardioprotective effect of the anti-HSP70 antibody was largely attributed to its ability to block AAC-activated immune response in the heart, as was indicated by suppressing the hypertension-enhanced conjugation of HSP70 with toll-like receptor 4, reducing heart-infiltrating macrophages, decreasing the expression of pro-inflammatory factor monocyte chemoattractant protein-1 and profibrotic factor transforming growth factor beta 1, and attenuating pro-hypertrophy signal MAPK P38 and ERK.. These results indicate that intracellular and extracellular HSP70 have different roles in the regulation of cardiac remodelling and function in response to hypertension. Extracellular HSP70 is a potential therapeutic target against cardiac hypertrophy and fibrosis. Topics: Angiotensin II; Animals; Antibodies; Benzhydryl Compounds; Blood Pressure; Cardiomegaly; Chemokine CCL2; Disease Models, Animal; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Fibrosis; HSP70 Heat-Shock Proteins; Hypertension; Male; Mice; Mice, Inbred ICR; Myocardium; p38 Mitogen-Activated Protein Kinases; Protein Transport; Pyrrolidinones; Signal Transduction; Time Factors; Toll-Like Receptor 4; Transcription, Genetic; Transforming Growth Factor beta1; Ventricular Remodeling | 2010 |