kn-93 has been researched along with Morphine-Dependence* in 2 studies
2 other study(ies) available for kn-93 and Morphine-Dependence
Article | Year |
---|---|
Reversal of morphine antinociceptive tolerance and dependence by the acute supraspinal inhibition of Ca(2+)/calmodulin-dependent protein kinase II.
Previous studies have suggested that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) can modulate opioid tolerance and dependence via its action on learning and memory. In this study, we examined whether CaMKII could directly regulate opioid tolerance and dependence. CaMKII activity was increased after the treatment with morphine (100 mg/kg s.c. or 75 mg s.c. of morphine/pellet/mouse); the effect exhibited a temporal correction with the development of opioid tolerance and dependence. In mice treated with morphine (100 mg/kg s.c.), morphine tolerance and dependence developed in 2 to 6 h. An acute supraspinal administration of KN93 [2-[N-(2-hydroxyethyl)]-N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine)], a CaMKII inhibitor, was able to dose-dependently reverse the already-established antinociceptive tolerance to morphine (p < 0.001 for 15-30 nmol; not significant for 5 nmol). KN92 [2-[N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine] (30 nmol i.c.v.), a kinase-inactive analog of KN93, did not affect opioid tolerance. Neither KN92 nor KN93 affected basal nociception or acute morphine antinociception (1-10 nmol i.c.v.). Likewise, dependence on morphine was abolished by the acute administration of KN93, but not KN92, in a dose-dependent manner. Pretreatment of mice with KN93 also prevented the development of morphine tolerance and dependence. The effect of acute CaMKII inhibition was not limited to the particular experimental model, because KN93 also acutely reversed the established opioid tolerance and dependence in mice treated with morphine (75 mg/pellet/mouse s.c.) for 6 days. Taken together, these data strongly support the hypothesis that CaMKII can act as a key and direct factor in promoting opioid tolerance and dependence. Identifying such a direct mechanism may be useful for designing pharmacological treatments for these conditions. Topics: Analgesics, Opioid; Animals; Benzylamines; Calcium-Calmodulin-Dependent Protein Kinases; Drug Tolerance; Male; Mice; Mice, Inbred ICR; Morphine; Morphine Dependence; Pain; Protein Kinase Inhibitors; Sulfonamides | 2006 |
Inhibition of calcium/calmodulin-dependent protein kinase II in rat hippocampus attenuates morphine tolerance and dependence.
Learning and memory have been suggested to be important in the development of opiate addiction. Based on the recent findings that calcium/calmodulin-dependent protein kinase II (CaMKII) is essential in learning and memory processes, and morphine treatment increases CaMKII activity in hippocampus, the present study was undertaken to examine whether inhibition of hippocampal CaMKII prevents morphine tolerance and dependence. Here, we report that inhibition of CaMKII by intrahippocampal dentate gyrus administration of the specific inhibitors KN-62 and KN-93 to rats significantly attenuated the tolerance to the analgesic effect of morphine and the abstinence syndrome precipitated by opiate antagonist naloxone. In contrast, both KN-04 and KN-92, the inactive structural analogs of KN-62 and KN-93, failed to attenuate morphine tolerance and dependence, indicating that the observed effects of KN-62 and KN-93 are mediated through inhibition of CaMKII. Furthermore, administration of CaMKII antisense oligonucleotide into rat hippocampal dentate gyrus, which decreased the expression of CaMKII specifically, also attenuated morphine tolerance and dependence, while the corresponding sense oligonucleotide of CaMKII did not exhibit such inhibitory effect. Moreover, the KN-62 treatment abolished the rewarding properties of morphine as measured by the conditioned place preference. These results suggest that hippocampal CaMKII is critically involved in the development of morphine tolerance and dependence, and inhibition of this kinase may have some therapeutic benefit in the treatment of opiate tolerance and dependence. Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; Animals; Benzylamines; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Calcium-Calmodulin-Dependent Protein Kinases; Conditioning, Psychological; Dose-Response Relationship, Drug; Drug Administration Routes; Drug Tolerance; Enzyme Inhibitors; Hippocampus; Male; Morphine Dependence; Oligonucleotides, Antisense; Rats; Rats, Sprague-Dawley; Sulfonamides | 1999 |