kn-93 and Chronic-Disease

kn-93 has been researched along with Chronic-Disease* in 5 studies

Other Studies

5 other study(ies) available for kn-93 and Chronic-Disease

ArticleYear
Modulation of NR1 receptor by CaMKIIα plays an important role in chronic itch development in mice.
    Brain research bulletin, 2020, Volume: 158

    Intractable scratching is the characteristic of chronic itch, which represents a great challenge in clinical practice. However, the mechanism underlying chronic itch development is largely unknown. In the present study, we investigated the role of NMDA receptor in acute itch and in development of chronic itch. A mouse model was developed by painting DNFB to induce allergic contact dermatitis (ACD). We found that the expression of pNR1, which is a subunit of NMDA receptor, was significantly increased in the dorsal root ganglion in the DNFB model. The DNFB-evoked spontaneous scratching was blocked by the NMDA antagonist D-AP-5, the calcium-calmodulin-dependent protein kinase (CaMK) inhibitor KN-93, a CaMKIIα siRNA and the PKC inhibitor LY317615. Moreover, activation of PKC did not reverse the CaMKIIα knockdown-induced decrease in scratching, suggesting that PKC functions upstream of CaMKIIα. Thus, our study indicates that modulation of NR1 receptor by CaMKIIα plays an important role in the development of chronic itch.

    Topics: Animals; Benzylamines; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Chronic Disease; Dinitrofluorobenzene; Injections, Spinal; Male; Mice; Mice, Inbred C57BL; N-Methylaspartate; Nerve Tissue Proteins; Protein Kinase Inhibitors; Pruritus; Receptors, N-Methyl-D-Aspartate; Sulfonamides

2020
Ca2+/Calmodulin-Dependent Protein Kinase II (CaMKII) Increases Small-Conductance Ca2+-Activated K+ Current in Patients with Chronic Atrial Fibrillation.
    Medical science monitor : international medical journal of experimental and clinical research, 2018, May-08, Volume: 24

    BACKGROUND Increased small-conductance Ca2+-activated K+ current (SK), abnormal intracellular Ca2+ handling, and enhanced expression and activity of Ca2+/calmodulin-dependent protein kinase II (CaMKII) have been found in clinical and/or experimental models of atrial fibrillation (AF), but the cumulative effect of these phenomena and their mechanisms in AF are still unclear. This study aimed to test the hypothesis that CaMKII increases SK current in human chronic AF. MATERIAL AND METHODS Right atrial appendage tissues from patients with either sinus rhythm (SR) or AF and neonatal rat atrial myocytes were used. Patch clamp, qRT-PCR, and Western blotting techniques were used to perform the study. RESULTS Compared to SR, the apamin-sensitive SK current (IKAS) was significantly increased, but the mRNA and protein levels of SK1, SK2, and SK3 were significantly decreased. In AF, the steady-state Ca2+ response curve of [i]IKAS[/i] was shifted leftward and the [Ca2+]i level was significantly increased. CaMKII inhibitors (KN-93 or autocamtide-2-related inhibitory peptide (AIP)) reduced the IKAS in both AF and SR. The inhibitory effect of KN-93 or AIP on [i]IKAS[/i] was greater in AF than in SR. The expression levels of calmodulin, CaMKII, and autophosphorylated CaMKII at Thr287 (but not at Thr286) were significantly increased in AF. Furthermore, KN-93 inhibited the expression of (Thr287)p-CaMKII and SK2 in neonatal rat atrial myocytes. CONCLUSIONS SK current is increased via the enhanced activation of CaMKII in patients with AF. This finding may explain the difference between SK current and channels expression in AF, and thus may provide a therapeutic target for AF.

    Topics: Animals; Atrial Fibrillation; Benzylamines; Calcium; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Cell Membrane Permeability; Chronic Disease; Coronary Sinus; Cytosol; Down-Regulation; Female; Heart Atria; Humans; Ion Channel Gating; Male; Middle Aged; Patch-Clamp Techniques; Peptides; Phosphorylation; Rats, Sprague-Dawley; RNA, Messenger; Small-Conductance Calcium-Activated Potassium Channels; Sulfonamides; Up-Regulation

2018
Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation.
    Circulation, 2012, May-01, Volume: 125, Issue:17

    Delayed afterdepolarizations (DADs) carried by Na(+)-Ca(2+)-exchange current (I(NCX)) in response to sarcoplasmic reticulum (SR) Ca(2+) leak can promote atrial fibrillation (AF). The mechanisms leading to delayed afterdepolarizations in AF patients have not been defined.. Protein levels (Western blot), membrane currents and action potentials (patch clamp), and [Ca(2+)](i) (Fluo-3) were measured in right atrial samples from 76 sinus rhythm (control) and 72 chronic AF (cAF) patients. Diastolic [Ca(2+)](i) and SR Ca(2+) content (integrated I(NCX) during caffeine-induced Ca(2+) transient) were unchanged, whereas diastolic SR Ca(2+) leak, estimated by blocking ryanodine receptors (RyR2) with tetracaine, was ≈50% higher in cAF versus control. Single-channel recordings from atrial RyR2 reconstituted into lipid bilayers revealed enhanced open probability in cAF samples, providing a molecular basis for increased SR Ca(2+) leak. Calmodulin expression (60%), Ca(2+)/calmodulin-dependent protein kinase-II (CaMKII) autophosphorylation at Thr287 (87%), and RyR2 phosphorylation at Ser2808 (protein kinase A/CaMKII site, 236%) and Ser2814 (CaMKII site, 77%) were increased in cAF. The selective CaMKII blocker KN-93 decreased SR Ca(2+) leak, the frequency of spontaneous Ca(2+) release events, and RyR2 open probability in cAF, whereas protein kinase A inhibition with H-89 was ineffective. Knock-in mice with constitutively phosphorylated RyR2 at Ser2814 showed a higher incidence of Ca(2+) sparks and increased susceptibility to pacing-induced AF compared with controls. The relationship between [Ca(2+)](i) and I(NCX) density revealed I(NCX) upregulation in cAF. Spontaneous Ca(2+) release events accompanied by inward I(NCX) currents and delayed afterdepolarizations/triggered activity occurred more often and the sensitivity of resting membrane voltage to elevated [Ca(2+)](i) (diastolic [Ca(2+)](i)-voltage coupling gain) was higher in cAF compared with control.. Enhanced SR Ca(2+) leak through CaMKII-hyperphosphorylated RyR2, in combination with larger I(NCX) for a given SR Ca(2+) release and increased diastolic [Ca(2+)](i)-voltage coupling gain, causes AF-promoting atrial delayed afterdepolarizations/triggered activity in cAF patients.

    Topics: Action Potentials; Aged; Animals; Atrial Fibrillation; Benzylamines; Biological Transport, Active; Caffeine; Calcium; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Calmodulin; Chronic Disease; Female; Gene Knock-In Techniques; Humans; Lipid Bilayers; Male; Membrane Potentials; Mice; Myocytes, Cardiac; Patch-Clamp Techniques; Phosphorylation; Protein Processing, Post-Translational; Recombinant Fusion Proteins; Ryanodine Receptor Calcium Release Channel; Sarcoplasmic Reticulum; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Sodium-Calcium Exchanger; Sulfonamides

2012
Modulation of late sodium current by Ca2+, calmodulin, and CaMKII in normal and failing dog cardiomyocytes: similarities and differences.
    American journal of physiology. Heart and circulatory physiology, 2008, Volume: 294, Issue:4

    Augmented and slowed late Na(+) current (I(NaL)) is implicated in action potential duration variability, early afterdepolarizations, and abnormal Ca(2+) handling in human and canine failing myocardium. Our objective was to study I(NaL) modulation by cytosolic Ca(2+) concentration ([Ca(2+)](i)) in normal and failing ventricular myocytes. Chronic heart failure was produced in 10 dogs by multiple sequential coronary artery microembolizations; 6 normal dogs served as a control. I(NaL) fine structure was measured by whole cell patch clamp in ventricular myocytes and approximated by a sum of fast and slow exponentials produced by burst and late scattered modes of Na(+) channel gating, respectively. I(NaL) greatly enhanced as [Ca(2+)](i) increased from "Ca(2+) free" to 1 microM: its maximum density increased, decay of both exponentials slowed, and the steady-state inactivation (SSI) curve shifted toward more positive potentials. Testing the inhibition of CaMKII and CaM revealed similarities and differences of I(NaL) modulation in failing vs. normal myocytes. Similarities include the following: 1) CaMKII slows I(NaL) decay and decreases the amplitude of fast exponentials, and 2) Ca(2+) shifts SSI rightward. Differences include the following: 1) slowing of I(NaL) by CaMKII is greater, 2) CaM shifts SSI leftward, and 3) Ca(2+) increases the amplitude of slow exponentials. We conclude that Ca(2+)/CaM/CaMKII signaling increases I(NaL) and Na(+) influx in both normal and failing myocytes by slowing inactivation kinetics and shifting SSI. This Na(+) influx provides a novel Ca(2+) positive feedback mechanism (via Na(+)/Ca(2+) exchanger), enhancing contractions at higher beating rates but worsening cardiomyocyte contractile and electrical performance in conditions of poor Ca(2+) handling in heart failure.

    Topics: Action Potentials; Animals; Arrhythmias, Cardiac; Benzylamines; Calcium; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Calmodulin; Chronic Disease; Cytosol; Disease Models, Animal; Dogs; Heart Failure; Heart Ventricles; Ion Channel Gating; Kinetics; Models, Cardiovascular; Myocytes, Cardiac; Patch-Clamp Techniques; Peptide Fragments; Protein Kinase Inhibitors; Research Design; Signal Transduction; Sodium; Sodium Channels; Sulfonamides

2008
Sustained potentiation by substance P of NMDA-activated current in rat primary sensory neurons.
    Brain research, 2004, Jun-04, Volume: 1010, Issue:1-2

    This study aimed to explore the modulatory effect of substance P (SP) on the current response mediated by N-methyl-D-aspartate (NMDA) receptor in rat primary sensory neurons and its time course using whole-cell patch clamp technique. The majority of neurons (179/213, 84.0%) examined were sensitive to NMDA (0.1-1000 microM) with an inward current, and a proportion of the NMDA-sensitive neurons also responded to SP (78/98, 80.0%) with an inward current. Pretreatment with SP potentiated the NMDA-activated current (INMDA) in a non-competitive manner, which is shown in that SP shifted the concentration-response curve for NMDA upwards compared with the control; the maximal value of INMDA increased fourfold, while the EC50 values for both curves were very close (28 vs. 30 microM). Furthermore, this potentiating effect was time-dependent: the amplitude of INMDA reached its maximum 20 min after SP preapplication, and thereafter maintained a steady level of about 2-3 times its control for 2 or even 3 h. This sustained potentiation by SP of INMDA could be blocked by extracellular application of WIN51708, a selective non-peptide antagonist of NK-1 receptor; and abolished by intracellular application of either BAPTA, or H-7, or KN-93. Though NMDA applied alone also induced a short-term (less than 20 min) self-potentiation of INMDA, it could be abolished by intracellular dialysis of BAPTA or KN-93 completely. As is known, the cell body of dorsal root ganglion (DRG) neurons is generally used as an accessible model for studying the characteristics of the membrane of primary afferent terminals in the dorsal horn of spinal cord. Therefore, these results may offer a clue to the explanation of the symptoms of chronic pain.

    Topics: Animals; Benzylamines; Calcium Signaling; Cell Membrane; Cells, Cultured; Chelating Agents; Chronic Disease; Dose-Response Relationship, Drug; Drug Synergism; Egtazic Acid; Enzyme Inhibitors; Ganglia, Spinal; Membrane Potentials; Models, Biological; N-Methylaspartate; Neurokinin-1 Receptor Antagonists; Neurons, Afferent; Pain; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Reaction Time; Receptors, N-Methyl-D-Aspartate; Receptors, Neurokinin-1; Substance P; Sulfonamides

2004