kn-93 and Cardiomegaly

kn-93 has been researched along with Cardiomegaly* in 8 studies

Other Studies

8 other study(ies) available for kn-93 and Cardiomegaly

ArticleYear
Mitochondrial reprogramming induced by CaMKIIδ mediates hypertrophy decompensation.
    Circulation research, 2015, Feb-27, Volume: 116, Issue:5

    Sustained activation of Gαq transgenic (Gq) signaling during pressure overload causes cardiac hypertrophy that ultimately progresses to dilated cardiomyopathy. The molecular events that drive hypertrophy decompensation are incompletely understood. Ca(2+)/calmodulin-dependent protein kinase II δ (CaMKIIδ) is activated downstream of Gq, and overexpression of Gq and CaMKIIδ recapitulates hypertrophy decompensation.. To determine whether CaMKIIδ contributes to hypertrophy decompensation provoked by Gq.. Compared with Gq mice, compound Gq/CaMKIIδ knockout mice developed a similar degree of cardiac hypertrophy but exhibited significantly improved left ventricular function, less cardiac fibrosis and cardiomyocyte apoptosis, and fewer ventricular arrhythmias. Markers of oxidative stress were elevated in mitochondria from Gq versus wild-type mice and respiratory rates were lower; these changes in mitochondrial function were restored by CaMKIIδ deletion. Gq-mediated increases in mitochondrial oxidative stress, compromised membrane potential, and cell death were recapitulated in neonatal rat ventricular myocytes infected with constitutively active Gq and attenuated by CaMKII inhibition. Deep RNA sequencing revealed altered expression of 41 mitochondrial genes in Gq hearts, with normalization of ≈40% of these genes by CaMKIIδ deletion. Uncoupling protein 3 was markedly downregulated in Gq or by Gq expression in neonatal rat ventricular myocytes and reversed by CaMKIIδ deletion or inhibition, as was peroxisome proliferator-activated receptor α. The protective effects of CaMKIIδ inhibition on reactive oxygen species generation and cell death were abrogated by knock down of uncoupling protein 3. Conversely, restoration of uncoupling protein 3 expression attenuated reactive oxygen species generation and cell death induced by CaMKIIδ. Our in vivo studies further demonstrated that pressure overload induced decreases in peroxisome proliferator-activated receptor α and uncoupling protein 3, increases in mitochondrial protein oxidation, and hypertrophy decompensation, which were attenuated by CaMKIIδ deletion.. Mitochondrial gene reprogramming induced by CaMKIIδ emerges as an important mechanism contributing to mitotoxicity in decompensating hypertrophy.

    Topics: Acetylcysteine; Animals; Apoptosis; Benzylamines; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Cardiomegaly; Cardiomyopathy, Dilated; Cells, Cultured; Disease Progression; Gene Expression Profiling; GTP-Binding Protein alpha Subunits, Gq-G11; Heart Failure; Ion Channels; Male; Mice; Mice, Knockout; Mice, Transgenic; Mitochondria, Heart; Mitochondrial Proteins; Myocytes, Cardiac; Oxidative Stress; Point Mutation; PPAR alpha; Pressure; Rats; Reactive Oxygen Species; RNA Interference; RNA, Messenger; RNA, Small Interfering; Sequence Analysis, RNA; Sulfonamides; Transfection; Uncoupling Protein 3

2015
Ca2+/calmodulin-dependent protein kinase II increases the susceptibility to the arrhythmogenic action potential alternans in spontaneously hypertensive rats.
    American journal of physiology. Heart and circulatory physiology, 2014, Jul-15, Volume: 307, Issue:2

    Action potential duration alternans (APD-ALT), defined as long-short-long repetitive pattern of APD, potentially leads to lethal ventricular arrhythmia. However, the mechanisms of APD-ALT in the arrhythmogenesis of cardiac hypertrophy remain undetermined. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is known to modulate the function of cardiac sarcoplasmic reticulum and play an important role in Ca(2+) cycling. We thus aimed to determine the role of CaMKII in the increased susceptibility to APD-ALT and arrhythmogenesis in the hypertrophied heart. APD was measured by high-resolution optical mapping in left ventricular (LV) anterior wall from normotensive Wistar-Kyoto (WKY; n = 10) and spontaneously hypertensive rats (SHR; n = 10) during rapid ventricular pacing. APD-ALT was evoked at significantly lower pacing rate in SHR compared with WKY (382 ± 43 vs. 465 ± 45 beats/min, P < 0.01). These changes in APD-ALT in SHR were completely reversed by KN-93 (1 μmol/l; n = 5), an inhibitor of CaMKII, but not its inactive analog, KN-92 (1 μmol/l; n = 5). The magnitude of APD-ALT was also significantly greater in SHR than WKY and was completely normalized by KN-93. Ventricular fibrillation (VF) was induced by rapid pacing more frequently in SHR than in WKY (60 vs. 10%; P < 0.05), which was also abolished by KN-93 (0%, P < 0.05). Western blot analyses indicated that the CaMKII autophosphorylation at Thr287 was significantly increased in SHR compared with WKY. The increased susceptibility to APD-ALT and VF during rapid pacing in hypertrophied heart was prevented by KN-93. CaMKII could be an important mechanism of arrhythmogenesis in cardiac hypertrophy.

    Topics: Action Potentials; Animals; Anti-Arrhythmia Agents; Benzylamines; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Cardiac Pacing, Artificial; Cardiomegaly; Disease Models, Animal; Heart Ventricles; Hypertension; Male; Phosphorylation; Protein Kinase Inhibitors; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Sulfonamides; Threonine; Time Factors; Ventricular Fibrillation

2014
Effects of calmodulin-dependent protein kinase II inhibitor, KN-93, on electrophysiological features of rabbit hypertrophic cardiac myocytes.
    Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban, 2012, Volume: 32, Issue:4

    Cardiac hypertrophy is an independent risk factor for sudden cardiac death in clinical settings and the incidence of sudden cardiac death and ventricular arrhythmias are closely related. The aim of this study was to determine the effects of the calmodulin-dependent protein kinase (CaMK) II inhibitor, KN-93, on L-type calcium current (I(Ca, L)) and early after-depolarizations (EADs) in hypertrophic cardiomyocytes. A rabbit model of myocardial hypertrophy was constructed through abdominal aortic coarctation (LVH group). The control group (sham group) received a sham operation, in which the abdominal aortic was dissected but not coarcted. Eight weeks later, the degree of left ventricular hypertrophy (LVH) was evaluated using echocardiography. Individual cardiomyocyte was isolated through collagenase digestion. Action potentials (APs) and I(Ca, L) were recorded using the perforated patch clamp technique. APs were recorded under current clamp conditions and I(Ca, L) was recorded under voltage clamp conditions. The incidence of EADs and I(ca, L) in the hypertrophic cardiomyocytes were observed under the conditions of low potassium (2 mmol/L), low magnesium (0.25 mmol/L) Tyrode's solution perfusion, and slow frequency (0.25-0.5 Hz) electrical stimulation. The incidence of EADs and I(ca, L) in the hypertrophic cardiomyocytes were also evaluated after treatment with different concentrations of KN-92 (KN-92 group) and KN-93 (KN-93 group). Eight weeks later, the model was successfully established. Under the conditions of low potassium, low magnesium Tyrode's solution perfusion, and slow frequency electrical stimulation, the incidence of EADs was 0/12, 11/12, 10/12, and 5/12 in sham group, LVH group, KN-92 group (0.5 μmol/L), and KN-93 group (0.5 μmol/L), respectively. When the drug concentration was increased to 1 μmol/L in KN-92 group and KN-93 group, the incidence of EADs was 10/12 and 2/12, respectively. At 0 mV, the current density was 6.7±1.0 and 6.3±0.7 PA·PF(-1) in LVH group and sham group, respectively (P>0.05, n=12). When the drug concentration was 0.5 μmol/L in KN-92 and KN-93 groups, the peak I(Ca, L) at 0 mV was decreased by (9.4±2.8)% and (10.5±3.0)% in the hypertrophic cardiomyocytes of the two groups, respectively (P>0.05, n=12). When the drug concentration was increased to 1 μmol/L, the peak I(Ca, L) values were lowered by (13.4±3.7)% and (40±4.9)%, respectively (P<0.01, n=12). KN-93, a specific inhibitor of CaMKII, can effectively inhibit the occurr

    Topics: Animals; Benzylamines; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Cardiomegaly; Female; Myocytes, Cardiac; Rabbits; Sulfonamides

2012
Role of endothelin in the induction of cardiac hypertrophy in vitro.
    PloS one, 2012, Volume: 7, Issue:8

    Endothelin (ET-1) is a peptide hormone mediating a wide variety of biological processes and is associated with development of cardiac dysfunction. Generally, ET-1 is regarded as a molecular marker released only in correlation with the observation of a hypertrophic response or in conjunction with other hypertrophic stress. Although the cardiac hypertrophic effect of ET-1 is demonstrated, inotropic properties of cardiac muscle during chronic ET-1-induced hypertrophy remain largely unclear. Through the use of a novel in vitro multicellular culture system, changes in contractile force and kinetics of rabbit cardiac trabeculae in response to 1 nM ET-1 for 24 hours can be observed. Compared to the initial force at t = 0 hours, ET-1 treated muscles showed a ~2.5 fold increase in developed force after 24 hours without any effect on time to peak contraction or time to 90% relaxation. ET-1 increased muscle diameter by 12.5 ± 3.2% from the initial size, due to increased cell width compared to non-ET-1 treated muscles. Using specific signaling antagonists, inhibition of NCX, CaMKII, MAPKK, and IP3 could attenuate the effect of ET-1 on increased developed force. However, among these inhibitions only IP3 receptor blocker could not prevent the increase muscle size by ET-1. Interestingly, though calcineurin-NFAT inhibition could not suppress the effect of ET-1 on force development, it did prevent muscle hypertrophy. These findings suggest that ET-1 provokes both inotropic and hypertrophic activations on myocardium in which both activations share the same signaling pathway through MAPK and CaMKII in associated with NCX activity.

    Topics: Analysis of Variance; Animals; Benzylamines; Boron Compounds; Calcineurin; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Cardiomegaly; Cyclosporine; Endothelins; Immunoblotting; In Vitro Techniques; Indoles; Kinetics; Maleimides; Mitogen-Activated Protein Kinases; Myocardial Contraction; NFATC Transcription Factors; Rabbits; Signal Transduction; Sulfonamides; Thiourea; Time Factors

2012
DY-9760e inhibits endothelin-1-induced cardiomyocyte hypertrophy through inhibition of CaMKII and ERK activities.
    Cardiovascular therapeutics, 2009,Spring, Volume: 27, Issue:1

    Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) have pivotal roles in endothelin-1 (ET-1)-induced cardiomyocyte hypertrophy. We here tested whether a novel CaM antagonist, DY-9760e inhibits ET-1-induced hypertrophy through inhibition of CaMKII and ERK activities. We first confirmed that Ca(2+) oscillation induced by ET-1 treatment elicits transient activation of CaMKII and ERK in cultured cardiomyocytes. DY-9760e treatment with 3 microM totally and partially inhibited the ET-1-induced CaMKII and ERK activation, respectively. The ET-1-induced ERK activation was also partially blocked by a CaMKII inhibitor, KN93. To confirm involvement of CaMKII activity in the ERK activation by ET-1 and A23187, cultured cardiomyocytes were transfected with a constitutively active CaMKII. The transfection with the active CaMKII elicited ERK activation in cultured cardiomyocytes and cotransfection with dominant negative CaMKII eliminated its ERK activation. Consistent with inhibitory actions of DY-9760e on the ET-1-induced CaMKII and ERK activation, induction of hypertrophy-related genes including atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) was significantly inhibited by DY-9760e treatment. Combination treatment with DY-9760e and U0126, a MEK inhibitor, totally blocked the ET-1-induced ANP and BNP expression. DY-9760e treatment (3 microM) significantly inhibited the ET-1-induced hypertrophy and combination treatment with DY-9760e and U0126 totally blocked the ET-1-induced hypertrophy in cultured cardiomyocytes. These results suggest that DY-9760e elicits antihypertrophic action on ET-1-induced cardiac hypertrophy through inhibition of CaMKII and ERK activation and that CaMKII activity in part mediates ET-1-induced ERK activation.

    Topics: Animals; Animals, Newborn; Atrial Natriuretic Factor; Benzylamines; Butadienes; Calcimycin; Calcium Signaling; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Cardiomegaly; Cell Proliferation; Cell Size; Cells, Cultured; DNA Replication; Endothelin-1; Extracellular Signal-Regulated MAP Kinases; Indazoles; Ionophores; Myocytes, Cardiac; Natriuretic Peptide, Brain; Nitriles; Phosphorylation; Protein Kinase Inhibitors; Rats; Rats, Wistar; RNA, Messenger; Sulfonamides; Time Factors; Transfection

2009
[The effects of calmodulin kinase II inhibitor on ventricular arrhythmias in rabbits with cardiac hypertrophy].
    Zhonghua xin xue guan bing za zhi, 2007, Volume: 35, Issue:1

    To investigate the effect of KN-93, a calmodulin kinase II inhibitor, on ventricular arrhythmias in rabbits with cardiac hypertrophy.. Female New Zealand white rabbits were randomly divided into four groups (n = 10 each): Sham; LVH; LVH + KN-92 and LVH + KN-93 group. LVH was induced by partially constricting the abdominal aorta. In Sham group, the abdominal aorta was exposed without constriction. Eight weeks later, the arterially perfused left ventricular wedge preparations were made and transmembrane action potentials (TAP) from epicardium and endocardium and transmural ECG were simultaneously recorded. Incidence of early after depolarization (EAD) and torsade de pointes (Tdp), QT interval, action potential duration (APD) and transmural depolarization dispersion (TDR) at different cycle lengths were observed under slow stimulation (2000 - 4000 ms), hypokalemic (2 mmol/L) and hypomagnesaemic (0.25 mmol/L) Tyrode's solution perfusion.. Left ventricular hypertrophy was detected in LVH group by echocardiography and not affected by KN-92 and KN-93. Perfused with hypokalemic, hypomagnesaemic Tyrode's solution and under slow stimulation (2000 - 4000 ms), the incidences of EAD and Tdp in Sham group, LVH group, LVH + KN-92 group (0.5 micromol/L) and LVH + KN-93 group (0.5 micromol/L) were 0/10, 10/10, 9/10, 5/10 and 0/10, 5/10, 4/10, 1/10, respectively. With 1 micromol/L KN-92 and KN-93, the incidences of EAD and Tdp in LVH + KN-92 and LVH + KN-93 group were 9/10, 3/10 and 4/10, 1/10 respectively. The QT interval, APD and TDR were not affected by KN-93.. The calmodulin kinase II inhibitor KN-93 can effectively suppress ventricular arrhythmias in rabbits with cardiac hypertrophy by decreasing EAD.

    Topics: Animals; Arrhythmias, Cardiac; Benzylamines; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Cardiomegaly; Disease Models, Animal; Male; Protein Kinase Inhibitors; Rabbits; Sulfonamides

2007
Transgenic CaMKIIdeltaC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release.
    Circulation research, 2003, May-02, Volume: 92, Issue:8

    Ca2+/calmodulin-dependent protein kinase II (CaMKII) delta is the predominant cardiac isoform, and the deltaC splice variant is cytoplasmic. We overexpressed CaMKIIdeltaC in mouse heart and observed dilated heart failure and altered myocyte Ca2+ regulation in 3-month-old CaMKIIdeltaC transgenic mice (TG) versus wild-type littermates (WT). Heart/body weight ratio and cardiomyocyte size were increased about 2-fold in TG versus WT. At 1 Hz, twitch shortening, [Ca2+]i transient amplitude, and diastolic [Ca2+]i were all reduced by approximately 50% in TG versus WT. This is explained by >50% reduction in SR Ca2+ content in TG versus WT. Peak Ca2+ current (ICa) was slightly increased, and action potential duration was prolonged in TG versus WT. Despite lower SR Ca2+ load and diastolic [Ca2+]i, fractional SR Ca2+ release was increased and resting spontaneous SR Ca2+ release events (Ca2+ sparks) were doubled in frequency in TG versus WT (with prolonged width and duration, but lower amplitude). Enhanced Ca2+ spark frequency was also seen in TG at 4 weeks (before heart failure onset). Acute CaMKII inhibition normalized Ca2+ spark frequency and ICa, consistent with direct CaMKII activation of ryanodine receptors (and ICa) in TG. The rate of [Ca2+]i decline during caffeine exposure was faster in TG, indicating enhanced Na+-Ca2+ exchange function (consistent with protein expression measurements). Enhanced diastolic SR Ca2+ leak (via sparks), reduced SR Ca2+-ATPase expression, and increased Na+-Ca2+ exchanger explain the reduced diastolic [Ca2+]i and SR Ca2+ content in TG. We conclude that CaMKIIdeltaC overexpression causes acute modulation of excitation-contraction coupling, which contributes to heart failure.

    Topics: Animals; Benzylamines; Blotting, Western; Caffeine; Calcium; Calcium Channels; Calcium-Binding Proteins; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Calcium-Calmodulin-Dependent Protein Kinases; Calcium-Transporting ATPases; Cardiomegaly; Cell Size; Cells, Cultured; Enzyme Inhibitors; Isoenzymes; Membrane Potentials; Mice; Mice, Transgenic; Microscopy, Confocal; Myocytes, Cardiac; Ryanodine Receptor Calcium Release Channel; Sarcoplasmic Reticulum; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Sodium-Calcium Exchanger; Sulfonamides

2003
Calmodulin kinase II and arrhythmias in a mouse model of cardiac hypertrophy.
    Circulation, 2002, 09-03, Volume: 106, Issue:10

    Calmodulin kinase (CaMK) II is linked to arrhythmia mechanisms in cellular models where repolarization is prolonged. CaMKII upregulation and prolonged repolarization are general features of cardiomyopathy, but the role of CaMKII in arrhythmias in cardiomyopathy is unknown.. We studied a mouse model of cardiac hypertrophy attributable to transgenic (TG) overexpression of a constitutively active form of CaMKIV that also has increased endogenous CaMKII activity. ECG-telemetered TG mice had significantly more arrhythmias than wild-type (WT) littermate controls at baseline, and arrhythmias were additionally increased by isoproterenol. Arrhythmias were significantly suppressed by an inhibitory agent targeting endogenous CaMKII. TG mice had longer QT intervals and action potential durations than WT mice, and TG cardiomyocytes had frequent early afterdepolarizations (EADs), a hypothesized mechanism for triggering arrhythmias. EADs were absent in WT cells before and after isoproterenol, whereas EAD frequency was unaffected by isoproterenol in TG mice. L-type Ca2+ channels (LTTCs) can activate EADs, and LTCC opening probability (Po) was significantly higher in TG than WT cardiomyocytes before and after isoproterenol. A CaMKII inhibitory peptide equalized TG and WT LTCC Po and eliminated EADs, whereas a peptide antagonist of the Na+/Ca2+ exchanger current, also hypothesized to support EADs, was ineffective.. These findings support the hypothesis that CaMKII is a proarrhythmic signaling molecule in cardiac hypertrophy in vivo. Cellular studies point to EADs as a triggering mechanism for arrhythmias but suggest that the increase in arrhythmias after beta-adrenergic stimulation is independent of enhanced EAD frequency.

    Topics: Action Potentials; Adrenergic beta-Agonists; Animals; Arrhythmias, Cardiac; Benzylamines; Calcium Channels, L-Type; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Calcium-Calmodulin-Dependent Protein Kinase Type 4; Calcium-Calmodulin-Dependent Protein Kinases; Cardiomegaly; Electric Conductivity; Electrocardiography; Enzyme Inhibitors; Humans; Isoproterenol; Mice; Mice, Transgenic; Myocardium; Phenotype; Signal Transduction; Sulfonamides

2002