kn-62 has been researched along with Nerve-Degeneration* in 2 studies
2 other study(ies) available for kn-62 and Nerve-Degeneration
Article | Year |
---|---|
Increased expression of calcium/calmodulin-dependent protein kinase type II subunit δ after rat traumatic brain injury.
Many cellular responses to Ca(2+) signals are mediated by Ca(2+)/calmodulin-dependent enzymes, among which is the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). CaMKII was originally described in rat brain tissue. In rat brain, four different subunits of the kinase have been identified: α, β, γ, and δ. This study aims to investigate changes of CaMKIIδ after traumatic brain injury and its possible role. Rat traumatic brain injury (TBI) model was established by controlled cortical injury system. In the present study, we mainly investigated the expression and cellular localization of CaMKIIδ after traumatic brain injury. Western blot analysis revealed that CaMKIIδ was present in normal rat brain cortex. It gradually increased, reached a peak at the third day after TBI, and then decreased. Importantly, more CaMKIIδ was colocalized with neuron. In addition, Western blot detection showed that the third day postinjury was also the apoptosis peak indicated by the elevated expression of caspase-3.Importantly, immunohistochemistry analysis revealed that injury-induced expression of CaMKIIδ was colabeled by caspase-3 (apoptosis cells marker). Moreover, pretreatment with the CaMKII inhibitor (KN62) reduced the injury-induced activation of caspase-3. Noticeably, the CaMKII inhibitor KN-62 could reduce TBI-induced cell injury assessed with lesion volume and attenuate behavioral outcome evaluated by motor test. These data suggested that CaMKIIδ may be implicated in the apoptosis of neuron and the recovery of neurological outcomes. However, the inherent mechanisms remained unknown. Further studies are needed to confirm the exact role of CaMKIIδ after brain injury. Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; Animals; Apoptosis; Brain Injuries; Calcium Signaling; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Caspase 3; Disease Models, Animal; Enzyme Inhibitors; Male; Nerve Degeneration; Neurons; Rats; Rats, Sprague-Dawley; Recovery of Function; Up-Regulation | 2012 |
Regional selective neuronal degeneration after protein phosphatase inhibition in hippocampal slice cultures: evidence for a MAP kinase-dependent mechanism.
The regional selectivity and mechanisms underlying the toxicity of the serine/threonine protein phosphatase inhibitor okadaic acid (OA) were investigated in hippocampal slice cultures. Image analysis of propidium iodide-labeled cultures revealed that okadaic acid caused a dose- and time-dependent injury to hippocampal neurons. Pyramidal cells in the CA3 region and granule cells in the dentate gyrus were much more sensitive to okadaic acid than the pyramidal cells in the CA1 region. Electron microscopy revealed ultrastructural changes in the pyramidal cells that were not consistent with an apoptotic process. Treatment with okadaic acid led to a rapid and sustained tyrosine phosphorylation of the mitogen-activated protein kinases ERK1 and ERK2 (p44/42(mapk)). The phosphorylation was markedly reduced after treatment of the cultures with the microbial alkaloid K-252a (a nonselective protein kinase inhibitor) or the MAP kinase kinase (MEK1/2) inhibitor PD98059. K-252a and PD98059 also ameliorated the okadaic acid-induced cell death. Inhibitors of protein kinase C, Ca2+/calmodulin-dependent protein kinase II, or tyrosine kinase were ineffective. These results indicate that sustained activation of the MAP kinase pathway, as seen after e.g., ischemia, may selectively harm specific subsets of neurons. The susceptibility to MAP kinase activation of the CA3 pyramidal cells and dentate granule cells may provide insight into the observed relationship between cerebral ischemia and dementia in Alzheimer's disease. Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; Animals; Antioxidants; Apoptosis; Benzylamines; Calcium-Calmodulin-Dependent Protein Kinases; Carbazoles; Enzyme Inhibitors; Flavanones; Flavonoids; Genistein; Hippocampus; Indole Alkaloids; Male; Microscopy, Electron; Microscopy, Fluorescence; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; Nerve Degeneration; Neurons; Okadaic Acid; Organ Culture Techniques; Phosphoric Monoester Hydrolases; Propidium; Protein Kinase Inhibitors; Protein Kinases; Rats; Rats, Wistar; Staurosporine; Sulfonamides | 1998 |