kmup-1 and Hypertension--Pulmonary

kmup-1 has been researched along with Hypertension--Pulmonary* in 4 studies

Other Studies

4 other study(ies) available for kmup-1 and Hypertension--Pulmonary

ArticleYear
Buffered l-ascorbic acid, alone or bound to KMUP-1 or sildenafil, reduces vascular endothelium growth factor and restores endothelium nitric oxide synthase in hypoxic pulmonary artery.
    The Kaohsiung journal of medical sciences, 2015, Volume: 31, Issue:5

    Ascorbic acid bound to KMUP-1 and sildenafil were examined for their antioxidant effects on vascular endothelium growth factor (VEGF) and endothelium nitric oxide synthase (eNOS) in hypoxic pulmonary artery (PA). Inhaled KMUP-1 and oral sildenafil released NO from eNOS. The effect of buffered l-ascorbic acid, alone and bound to KMUP-1 or sildenafil, for treating pulmonary arterial hypertension (PAH) is unclear. In this study, the antioxidant capacity of ascorbic acid increased the beneficial effects of KMUP-1 on PAH. KMUP-1A and sildenafil-A (5 mg/kg/d) were administered to hypoxic PAH rats. Pulmonary artery blood pressure, and VEGF, Rho kinase II (ROCK II), eNOS, soluble guanylate cyclase (sGC-α), and protein kinase G expression in lung tissues were measured to link PAH and right ventricular hypertrophy. Hypoxic rats had higher pulmonary artery blood pressure, greater PA medial wall thickness and cardiac weight, and a higher right ventricle/left ventricle + septum [RV/(LV+S)] ratio than normoxic rats. Oral KMUP-1A or sildenafil-A for 21 days in hypoxia prevented the rarefaction of eNOS in immunohistochemistry (IHC), reduced the IHC of VEGF in PAs, restored eNOS/protein kinase G/phosphodiesterase 5A; unaffected sGC-α and inactivated ROCK II expression were also found in lung tissues. In normoxic PA, KMUP-1A/Y27632 (10μM) increased eNOS and reduced ROCK II. ROCK II/reactive oxidative species was increased and eNOS was reduced after long-term hypoxia for 21 days. KMUP-1A or Y27632 blunted ROCK II in short-term hypoxic PA at 24 hours. l-Ascorbic acid + l-sodium ascorbate (40, 80μM) buffer alone directly inhibited the IHC of VEGF in hypoxic PA. Finally, KMUP-1A or sildenafil-A reduced PAH and associated right ventricular hypertrophy.

    Topics: Amides; Animals; Ascorbic Acid; Endothelium, Vascular; Hypertension, Pulmonary; Hypoxia; Male; Nitric Oxide Synthase Type III; Piperidines; Pulmonary Artery; Pyridines; Rats; Sildenafil Citrate; Vascular Endothelial Growth Factors; Xanthines

2015
Endothelial nitric oxide synthase-enhancing G-protein coupled receptor antagonist inhibits pulmonary artery hypertension by endothelin-1-dependent and endothelin-1-independent pathways in a monocrotaline model.
    The Kaohsiung journal of medical sciences, 2014, Volume: 30, Issue:6

    This study investigates whether endothelin-1 (ET-1) mediates monocrotaline (MCT)-induced pulmonary artery hypertension (PAH) and right ventricular hypertrophy (RVH), and if so, whether the G-protein coupled receptor antagonist KMUP-1 (7-{2-[4-(2-chlorobenzene)piperazinyl]ethyl}-1,3-dimethylxanthine) inhibits ET-1-mediated PA constriction and the aforementioned pathological changes. In a chronic rat model, intraperitoneal MCT (60 mg/kg) induced PAH and increased PA medial wall thickening and RV/left ventricle + septum weight ratio on Day 21 after MCT injection. Treatment with sublingual KMUP-1 (2.5 mg/kg/day) for 21 days prevented these changes and restored vascular endothelial nitric oxide synthase (eNOS) immunohistochemical staining of lung tissues. Western blotting analysis demonstrated that KMUP-1 enhanced eNOS, soluble guanylate cyclase, and protein kinase G levels, and reduced ET-1 expression and inactivated Rho kinase II (ROCKII) in MCT-treated lung tissue over long-term administration. In MCT-treated rats, KMUP-1 decreased plasma ET-1 on Day 21. KMUP-1 (3.6 mg/kg) maximally appeared at 0.25 hours in the plasma and declined to basal levels within 24 hours after sublingual administration. In isolated PA of MCT-treated rats, compared with control and pretreatment with l-NG-nitroarginine methyl ester (100 μM), KMUP-1 (0.1-100 μM) inhibited ET-1 (0.01 μM)-induced vasoconstriction. Endothelium-denuded PA sustained higher contractility in the presence of KMUP-1. In a 24-hour culture of smooth muscle cells (i.e., PA smooth muscle cells or PASMCs), KMUP-1 (0.1-10 μM) inhibited RhoA- and ET-1-induced RhoA activation. KMUP-1 prevented MCT-induced PAH, PA wall thickening, and RVH by enhancing eNOS and suppressing ET-1/ROCKII expression. In vitro, KMUP-1 inhibited ET-1-induced PA constriction and ET-1-dependent/independent RhoA activation of PASMCs. In summary, KMUP-1 attenuates ET-1-induced/ET-1-mediated PA constriction, and could thus aid in the treatment of PAH caused by MCT.

    Topics: Animals; Blood Pressure; Body Weight; Cyclic GMP-Dependent Protein Kinases; Disease Models, Animal; Endothelin-1; Guanylate Cyclase; Heart Rate; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; In Vitro Techniques; Male; Monocrotaline; Nitric Oxide Synthase Type III; Piperazines; Piperidines; Pulmonary Artery; Purines; Rats, Wistar; Receptors, Cytoplasmic and Nuclear; Receptors, G-Protein-Coupled; rho-Associated Kinases; rhoA GTP-Binding Protein; Signal Transduction; Sildenafil Citrate; Soluble Guanylyl Cyclase; Sulfonamides; Vasoconstriction; Xanthines

2014
KMUP-1 ameliorates monocrotaline-induced pulmonary arterial hypertension through the modulation of Ca2+ sensitization and K+-channel.
    Life sciences, 2010, May-08, Volume: 86, Issue:19-20

    This study investigates the actions of KMUP-1 on RhoA/Rho-kinase (ROCK)-dependent Ca(2+) sensitization and the K(+)-channel in chronic pulmonary arterial hypertension (PAH) rats.. Sprague-Dawley rats were divided into control, monocrotaline (MCT), and MCT+KMUP-1 groups. PAH was induced by a single intraperitoneal injection (i.p.) of MCT (60 mg/kg). KMUP-1 (5 mg/kg, i.p.) was administered once daily for 21 days to prevent MCT-induced PAH. All rats were sacrificed on day 22.. MCT-induced increased right ventricular systolic pressure (RVSP) and right ventricular hypertrophy were prevented by KMUP-1. In myograph experiments, KCl (80 mM), phenylephrine (10 microM) and K(+) channel inhibitors (TEA, 10 mM; paxilline, 10 microM; 4-AP, 5 mM) induced weak PA contractions in MCT-treated rats compared to controls, but the PA reactivity was restored in MCT+KMUP-1-treated rats. By contrast, in beta-escin- or alpha-toxin-permeabilized PAs, CaCl(2)-induced (1.25 mM, pCa 5.1) contractions were stronger in MCT-treated rats, and this action was suppressed in MCT+KMUP-1-treated rats. PA relaxation in response to the ROCK inhibitor Y27632 (0.1 microM) was much higher in MCT-treated rats than in control rats. In Western blot analysis, the expression of Ca(2+)-activated K(+) (BK(Ca)) and voltage-gated K(+) channels (Kv2.1 and Kv1.5), and ROCK II proteins was elevated in MCT-treated rats and suppressed in MCT+KMUP-1-treated rats. We suggest that MCT-treated rats upregulate K(+)-channel proteins to adapt to chronic PAH.. KMUP-1 protects against PAH and restores PA vessel tone in MCT-treated rats, attributed to alteration of Ca(2+) sensitivity and K(+)-channel function.

    Topics: Animals; Blotting, Western; Calcium; Chronic Disease; Female; Hypertension, Pulmonary; Monocrotaline; Muscle Contraction; Muscle, Smooth, Vascular; Myography; Piperidines; Potassium Channels, Calcium-Activated; Potassium Channels, Voltage-Gated; Pulmonary Artery; Rats; Rats, Sprague-Dawley; rho-Associated Kinases; rhoA GTP-Binding Protein; Up-Regulation; Xanthines

2010
The xanthine derivative KMUP-1 inhibits models of pulmonary artery hypertension via increased NO and cGMP-dependent inhibition of RhoA/Rho kinase.
    British journal of pharmacology, 2010, Volume: 160, Issue:4

    KMUP-1 is known to increase cGMP, enhance endothelial nitric oxide synthase (eNOS) and suppress Rho kinase (ROCK) expression in smooth muscle. Here, we investigated the mechanism of action of KMUP-1 on acute and chronic pulmonary artery hypertension (PAH) in rats.. We measured pulmonary vascular contractility, wall thickening, eNOS immunostaining, expressions of ROCK II, RhoA activation, myosin phosphatase target subunit 1 (MYPT1) phosphorylation, eNOS, soluble guanylyl cyclase (sGC), protein kinase G (PKG) and phosphodiesterase 5A (PDE-5A), blood oxygenation and cGMP/cAMP, and right ventricular hypertrophy (RVH) in rats.. In rings of intact pulmonary artery (PA), KMUP-1 relaxed the vasoconstriction induced by phenylephrine (10 microM) or the thromboxane A(2)-mimetic U46619 (0.5 microM). In endothelium-denuded PA rings, this relaxation was reduced. In acute PAH induced by U46619 (2.5 microg x kg(-1) x min(-1), 30 min), KMUP-1 relaxed vasoconstriction by enhancing levels of eNOS, sGC and PKG, suppressing those of PDE-5A, RhoA/ROCK II activation and MYPT1 phosphorylation, and restoring oxygenation in blood and cGMP/cAMP in plasma. Incubating smooth muscle cells from PA (PASMCs) with KMUP-1 inhibited thapsigargin-induced Ca(2+) efflux and angiotensin II-induced Ca(2+) influx. In chronic PAH model induced by monocrotaline, KMUP-1 increased eNOS and reduced RhoA/ROCK II activation/expression, PA wall thickening, eNOS immunostaining and RVH. KMUP-1 and sildenafil did not inhibit monocrotaline-induced PDE-5A expression.. KMUP-1 decreased PAH by enhancing NO synthesis by eNOS, with consequent cGMP-dependent inhibition of RhoA/ROCK II and Ca(2+) desensitization in PASMCs. KMUP-1 has the potential to reduce vascular resistance, remodelling and RVH in PAH.

    Topics: Animals; Antihypertensive Agents; Calcium Signaling; Cells, Cultured; Cyclic GMP-Dependent Protein Kinases; Endothelium, Vascular; Enzyme Inhibitors; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; In Vitro Techniques; Lung; Male; Myocytes, Smooth Muscle; Nitric Oxide Synthase Type III; Nucleotides, Cyclic; Phosphorylation; Piperidines; Protein Phosphatase 1; Pulmonary Artery; Rats; Rats, Wistar; rho-Associated Kinases; rhoA GTP-Binding Protein; Vasodilation; Xanthines

2010