kiss1-protein--human and Ischemia

kiss1-protein--human has been researched along with Ischemia* in 3 studies

Other Studies

3 other study(ies) available for kiss1-protein--human and Ischemia

ArticleYear
Semaglutide early intervention attenuated testicular dysfunction by targeting the GLP-1-PPAR-α-Kisspeptin-Steroidogenesis signaling pathway in a testicular ischemia-reperfusion rat model.
    Peptides, 2022, Volume: 149

    Testicular torsion is a serious emergency and a well-known cause of male infertility. It represents 10 %-15 % of scrotal diseases in children. Kisspeptin (KISS1) is a hormone secreted from the hypothalamic nuclei and testis, but its role in testis is not fully understood. Semaglutide is a novel antidiabetic glucagon-like peptide 1 (GLP-1) analog. Hence, we designed the current study to elucidate the possible ameliorative effect of semaglutide on ischemia/reperfusion-induced testicular dysfunction in rats and highlight the role of the testicular GLP-1/PCG-1α-PPAR-α-KISS1 signaling pathway. We randomly divided 50 male Sprague Dawley into five equal groups (10 rats each): SHAM, exendin 9-39 -treated (EX), testicular torsion/detorsion (T/D), testicular torsion/detorsion and semaglutide-treated (SEM + T/D), and testicular torsion/detorsion, exendin, and semaglutide-treated (EX + SEM + T/D). We quantified serum follicle-stimulating hormone, luteinizing hormone, total testosterone, testicular oxidative stress markers, testicular gene expression of GLP-1/KISS1 pathway-related genes (KISS1, KISS1R, GLP-1, GLP-1R, PGC-1α, PPAR-α), steroidogenesis pathway-related genes (STAR, CYP11A1, CYP17A1, HSD17B3, CYP19A1), HO-1, Nrf-2, and testicular protein expression of HIF-1α, TNF-α, NF-κβ, Caspase-3, FAS, proliferating cell nuclear antigen, and KISS1 through testicular histopathology and immunohistochemistry assays. Testicular torsion/detorsion markedly elevated proapoptotic, proinflammatory, and oxidative stress marker levels, noticeably downregulating the expression of GLP-1/KISS1 and steroidogenesis pathway-related proteins. Semaglutide administration significantly ameliorated all these deleterious effects. Nevertheless, injecting exendin, a GLP1-R antagonist, before semaglutide abolished all the documented improvements. We concluded that semaglutide ameliorated ischemia/reperfusion-induced testicular dysfunction by modulating the GLP-1/PGC-1α-PPAR-α/KISS1/steroidogenesis signaling pathway, improving testicular oxidative state, and suppressing testicular inflammation and apoptosis.

    Topics: Animals; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Ischemia; Kisspeptins; Male; Oxidative Stress; PPAR alpha; Rats; Rats, Sprague-Dawley; Reperfusion; Reperfusion Injury; Signal Transduction; Testis

2022
What is the protective effect of preischemic kisspeptin-10 administration against ischemia/reperfusion injury of striatum on mice?
    Turkish journal of medical sciences, 2022, Volume: 52, Issue:5

    Kisspeptin is a neuropeptide with a primary role on the onset of puberty and has beneficial effects on ischemia/ reperfusion (I/R) injury. In this study, we aimed to investigate the effect of kisspeptin administration on striatal I/R injury in mice.. Forty adult C57/BL6 mice were randomly divided into four groups: Sham, Kisspeptin, I/R, and I/R + Kisspeptin groups. The groups were administered with either physiological saline (Sham and I/R groups) or kisspeptin (Kisspeptin and I/R + Kisspeptin groups) intraperitoneally 40 min before the operation. A microdialysis probe was placed in the right striatum according to stereotaxic coordinates. During the experimental period, artificial cerebrospinal fluid was passed through the micropump. Then, transient cerebral ischemia was established by compressing both common carotid arteries with an aneurysm clip for 15 min and animals were reperfused for 2 h. Throughout the process of microdialysis (before, during and after I/R period), samples were collected to measure dopamine (DA), noradrenaline (NA), and 3,4-dihydroxyphenylglycine (DHPG) at intervals of 20 min continuously. At the end of the reperfusion period, the animals were decapitated, striatum was dissected, half of the animals were used for oxidative stress analyses (reduced glutathione, glutathione S-transferase (GST), superoxide dismutase (SOD), malondialdehyde (MDA), and the other half were used for histopathology analyses.. Number of glial cells was significantly increased in kisspeptin-administered groups. DA levels in ischemic animals were decreased by kisspeptin administration (p < 0.0001). NA levels were reduced in animals administered with kisspeptin without I/R injury (p < 0.05). DHPG levels reduced during the reperfusion period in ischemic animals (p < 0.05). Kisspeptin did not exhibit a significant antioxidant activity in the ischemic animals, while GST and SOD levels were reduced in the I/R + kisspeptin group compared to the kisspeptin group (p < 0.05).. Our results suggest that kisspeptin may be regulating the neurotransmitter release and metabolism, as well as inflammatory response in brain upon I/R injury.

    Topics: Animals; Dopamine; Glutathione Transferase; Ischemia; Kisspeptins; Mice; Norepinephrine; Reperfusion Injury; Superoxide Dismutase

2022
Kisspeptin-10 induces endothelial cellular senescence and impaired endothelial cell growth.
    Clinical science (London, England : 1979), 2014, Volume: 127, Issue:1

    The KPs (kisspeptins) are a family of multifunctional peptides with established roles in cancer metastasis, puberty and vasoconstriction. The effects of KPs on endothelial cells have yet to be determined. The aim of the present study was to investigate the effects of KP-10 on endothelial cell growth and the mechanisms underlying those effects. The administration of recombinant KP-10 into the hindlimbs of rats with ischaemia significantly impaired blood flow recovery, as shown by laser Doppler, and capillary growth, as shown using histology, compared with the controls. HUVECs (human umbilical vein endothelial cells) express the KP receptor and were treated with KP-10 in culture studies. KP-10 inhibited endothelial cell tube formation and proliferation in a significant and dose-dependent manner. The HUVECs treated with KP exhibited the senescent phenotype, as determined using a senescence-associated β-galactosidase assay, cell morphology analysis, and decreased Sirt1 (sirtuin 1) expression and increased p53 expression shown by Western blot analysis. Intriguingly, a pharmacological Rho kinase inhibitor, Y-27632, was found to increase the proliferation of HUVECs and to reduce the number of senescent phenotype cells affected by KP-10. In conclusion, KP-10 suppressed endothelial cells growth both in vivo and in vitro in the present study. The adverse effect of KP on endothelial cells was attributable, at least in part, to the induction of cellular senescence.

    Topics: Amides; Animals; Cell Proliferation; Cells, Cultured; Cellular Senescence; Collateral Circulation; Dose-Response Relationship, Drug; Endothelium, Vascular; Enzyme Inhibitors; Hindlimb; Human Umbilical Vein Endothelial Cells; Humans; Ischemia; Kisspeptins; Male; Pyridines; Rats; Rats, Wistar; Recombinant Proteins; rho-Associated Kinases

2014