kf38789 has been researched along with Disease-Models--Animal* in 2 studies
2 other study(ies) available for kf38789 and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Global gene expression analysis in the mouse brainstem after hyperalgesia induced by facial carrageenan injection--evidence for a form of neurovascular coupling?
The present study was carried out to examine global gene expression in the brainstem, in a mouse facial carrageenan injection model of orofacial pain. Mice that received facial carrageenan injection showed increased mechanical allodynia, demonstrated by increased responses to von Frey hair stimulation of the face. The brainstem was harvested at 3 days post-injection, corresponding to the time of peak responses, and analyzed by Affymetrix Mouse Genome 430 2.0 microarrays. We sought to identify common genes that are changed in the respective sides of the brainstem after either right- or left-sided facial carrageenan injection. The result is a relatively small list of genes (22 genes), which were then classified using DAVID software. Many of them fell into the categories of "response to stress", "defence response", "response to biotic stimulus", "cell adhesion" and "leukocyte adhesion". Of these, increased expression of P-selectin, ICAM-1 and CCL12 after carrageenan injection could be verified by real-time RT-PCR on both the right and left sides, and increased in P-selectin and ICAM-1 further verified by Western blot analysis. P-selectin and ICAM-1 were immunolocalized to endothelial cells, and were double labelled with von Willebrand factor. Intraperitoneal injection of the P-selectin inhibitor KF38789 significantly reduced mechanical allodynia in the facial carrageenan-injected mice. P-selectin mediates the capturing of leukocytes from the bloodstream and rolling of leukocytes along the endothelial surface. We hypothesize that increased nociceptive input to the brainstem could attract circulating macrophages into the brain, resulting in neuroinflammation and pain. Topics: Animals; Brain Stem; Carrageenan; Disease Models, Animal; Dose-Response Relationship, Drug; Face; Gene Expression; Gene Expression Profiling; Hyperalgesia; Intercellular Adhesion Molecule-1; Male; Mice; Mice, Inbred C57BL; Oligonucleotide Array Sequence Analysis; P-Selectin; Pain Measurement; Pain Threshold; Physical Stimulation; Platelet Membrane Glycoproteins; Pyrones | 2009 |