keratan-sulfate and Brain-Neoplasms

keratan-sulfate has been researched along with Brain-Neoplasms* in 3 studies

Other Studies

3 other study(ies) available for keratan-sulfate and Brain-Neoplasms

ArticleYear
Microenvironmental Modulation of Decorin and Lumican in Temozolomide-Resistant Glioblastoma and Neuroblastoma Cancer Stem-Like Cells.
    PloS one, 2015, Volume: 10, Issue:7

    The presence of cancer stem cells (CSCs) or tumor-initiating cells can lead to cancer recurrence in a permissive cell-microenvironment interplay, promoting invasion in glioblastoma (GBM) and neuroblastoma (NB). Extracellular matrix (ECM) small leucine-rich proteoglycans (SLRPs) play multiple roles in tissue homeostasis by remodeling the extracellular matrix (ECM) components and modulating intracellular signaling pathways. Due to their pan-inhibitory properties against receptor tyrosine kinases (RTKs), SLRPs are reported to exert anticancer effects in vitro and in vivo. However, their roles seem to be tissue-specific and they are also involved in cancer cell migration and drug resistance, paving the way to complex different scenarios. The aim of this study was to determine whether the SLRPs decorin (DCN) and lumican (LUM) are recruited in cell plasticity and microenvironmental adaptation of differentiated cancer cells induced towards stem-like phenotype. Floating neurospheres were generated by applying CSC enrichment medium (neural stem cell serum-free medium, NSC SFM) to the established SF-268 and SK-N-SH cancer cell lines, cellular models of GBM and NB, respectively. In both models, the time-dependent synergistic activation of DCN and LUM was observed. The highest DCN and LUM mRNA/protein expression was detected after cell exposure to NSC SFM for 8/12 days, considering these cells as SLRP-expressing (SLRP+) CSC-like. Ultrastructural imaging showed the cellular heterogeneity of both the GBM and NB neurospheres and identified the inner living cells. Parental cell lines of both GBM and NB grew only in soft agar + NSC SFM, whereas the secondary neurospheres (originated from SLRP+ t8 CSC-like) showed lower proliferation rates than primary neurospheres. Interestingly, the SLRP+ CSC-like from the GBM and NB neurospheres were resistant to temozolomide (TMZ) at concentrations >750 μM. Our results suggest that GBM and NB CSC-like promote the activation of huge quantities of SLRP in response to CSC enrichment, simultaneously acquiring TMZ resistance, cellular heterogeneity, and a quiescent phenotype, suggesting a novel pivotal role for SLRP in drug resistance and cell plasticity of CSC-like, allowing cell survival and ECM/niche modulation potential.

    Topics: Brain Neoplasms; Chondroitin Sulfate Proteoglycans; Dacarbazine; Decorin; Glioblastoma; Humans; Keratan Sulfate; Lumican; Neoplastic Stem Cells; Neuroblastoma; Temozolomide; Tumor Microenvironment

2015
An improved method for the structural profiling of keratan sulfates: analysis of keratan sulfates from brain and ovarian tumors.
    Glycobiology, 1999, Volume: 9, Issue:3

    A previously developed method for the structural fingerprinting of keratan sulfates (Brown et al., Glycobiology, 5, 311-317, 1995) has been adapted for use with oligosaccharides fluorescently labeled with 2-aminobenzoic acid following keratanase II digestion. The oligosaccharides are separated by high-pH anion-exchange chromatography on a Dionex AS4A-SC column. This methodology permits quantitative analysis of labeled oligosaccharides which can be detected at the sub-nanogram ( approximately 100 fmol) level. Satisfactory calibration of this method can be achieved using commercial keratan sulfate standards. Keratan sulfates from porcine brain phosphocan and human ovarian tumors have been examined using this methodology, and their structural features are discussed.

    Topics: Acetylglucosaminidase; Animals; Brain Neoplasms; Carbohydrate Sequence; Cattle; Chromatography, High Pressure Liquid; Chromatography, Ion Exchange; Chromatography, Liquid; Female; Fluorometry; Humans; Keratan Sulfate; Molecular Sequence Data; Oligosaccharides; ortho-Aminobenzoates; Ovarian Neoplasms; Swine

1999
Immunohistochemical localization of glycosaminoglycans in experimental rat glioma models.
    Journal of neuro-oncology, 1994, Volume: 21, Issue:3

    Changes of glycosaminoglycan distribution in and around C6 glioma and ethylnitrosourea(ENU)-induced glioma in rats were investigated using monoclonal antibodies that specifically recognize epitopes on chondroitin-0-sulfate proteoglycan (C-0-S), chondroitin-4-sulfate proteoglycan (C-4-S), dermatan sulfate proteoglycan (DS), chondroitin-6-sulfate proteoglycan (C-6-S) and keratan sulfate proteoglycan (KS) after chondroitinase ABC digestion. In the normal brain tissues, C-0-S was located on the surface of the neurons. In addition, extracellular staining in the cerebral cortex and axoplasmic staining in the brain stem and the reticular thalamic nucleus were seen. C-0-S was negative, however, both in the C6 and ENU-induced gliomas. C-4-S or DS was detected only in some of the neurons in the normal brain tissues. They were detected in the peripheral part of the ENU-induced gliomas, but not in the C6 gliomas. C-6-S was located on the surface of some neurons and in the white matter of the normal brain, but it was not detected in C6 gliomas. In all ENU-induced gliomas, C-6-S was identified in the adventitia of the vascular structures within the tumor. In some of them, C-6-S appeared in the peripheral part of the tumor. KS was immunostained in the glial cells in the hippocampus, corpus callosum, brain stem, and the floor of the third ventricle. It was also detected in the peritumoral brain tissues both in the C6 and ENU-induced rat gliomas. The significance of glycosaminoglycans in these glioma models was discussed.

    Topics: Animals; Brain Neoplasms; Chondroitin Sulfates; Ethylnitrosourea; Female; Glial Fibrillary Acidic Protein; Glioma; Immunohistochemistry; Keratan Sulfate; Male; Rats; Rats, Wistar

1994