kb-r7943 and Arrhythmias--Cardiac

kb-r7943 has been researched along with Arrhythmias--Cardiac* in 14 studies

Reviews

1 review(s) available for kb-r7943 and Arrhythmias--Cardiac

ArticleYear
Sodium calcium exchange as a target for antiarrhythmic therapy.
    Handbook of experimental pharmacology, 2006, Issue:171

    In search of better antiarrhythmic therapy, targeting the Na/Ca exchanger is an option to be explored. The rationale is that increased activity of the Na/Ca exchanger has been implicated in arrhythmogenesis in a number of conditions. The evidence is strong for triggered arrhythmias related to Ca2+ overload, due to increased Na+ load or during adrenergic stimulation; the Na/Ca exchanger may be important in triggered arrhythmias in heart failure and in atrial fibrillation. There is also evidence for a less direct role of the Na/Ca exchanger in contributing to remodelling processes. In this chapter, we review this evidence and discuss the consequences of inhibition of Na/Ca exchange in the perspective of its physiological role in Ca2+ homeostasis. We summarize the current data on the use of available blockers of Na/Ca exchange and propose a framework for further study and development of such drugs. Very selective agents have great potential as tools for further study of the role the Na/Ca exchanger plays in arrhythmogenesis. For therapy, they may have their specific indications, but they carry the risk of increasing Ca2+ load of the cell. Agents with a broader action that includes Ca2+ channel block may have advantages in other conditions, e.g. with Ca2+ overload. Additional actions such as block of K+ channels, which may be unwanted in e.g. heart failure, may be used to advantage as well.

    Topics: Action Potentials; Aniline Compounds; Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Calcium; Cardiomegaly; Heart; Heart Failure; Humans; Myocardium; Phenyl Ethers; Sodium-Calcium Exchanger; Thiourea

2006

Other Studies

13 other study(ies) available for kb-r7943 and Arrhythmias--Cardiac

ArticleYear
Modulation of post-pacing action potential duration and contractile responses on ventricular arrhythmogenesis in chloroquine-induced long QT syndrome.
    European journal of pharmacology, 2023, Feb-15, Volume: 941

    Excitation-contraction (E-C) coupling, the interaction of action potential duration (APD) and contractility, plays an essential role in arrhythmogenesis. We aimed to investigate the arrhythmogenic role of E-C coupling in the right ventricular outflow tract (RVOT) in the chloroquine-induced long QT syndrome.. Conventional microelectrodes were used to record electrical and mechanical activity simultaneously under electrical pacing (cycle lengths from 1000-100 ms) in rabbit RVOT tissue preparations before and after chloroquine with and without azithromycin. KB-R7943 (a Na. Sequential infusion of chloroquine and chloroquine plus azithromycin triggered ventricular tachycardia (VT) (33.7%) after rapid pacing compared to baseline (6.7%, p = 0.004). There were greater post-pacing increases of the first occurrence of contractility (ΔContractility) in the VT group (VT vs. non-VT: 521.2 ± 50.5% vs. 306.5 ± 26.8%, p < 0.001). There was no difference in the first occurrence of action potential at 90% repolarization (ΔAPD. ΔContractility (but not ΔAPD) played a crucial role in the genesis of pacing-induced VT in the long QT tissue model, which can be modulated by NCX (but not late sodium current) inhibition or MgSO

    Topics: Action Potentials; Animals; Arrhythmias, Cardiac; Azithromycin; Long QT Syndrome; Rabbits; Ranolazine; Sodium; Tachycardia, Ventricular

2023
Contribution of Na+/Ca2+ exchange current to the formation of delayed afterdepolarizations in intact rat ventricular muscle.
    Journal of cardiovascular pharmacology, 2009, Volume: 53, Issue:6

    To evaluate the role of the Na+-Ca2+ exchange current in the induction of arrhythmias during Ca2+ waves, we investigated the relationship between Ca2+ waves and delayed afterdepolarizations (DADs) and further investigated the effect of KB-R7943, an Na+-Ca2+ exchange inhibitor, on such relationship in multicellular muscle.. Force, sarcomere length, membrane potential, and [Ca2+]i dynamics were measured in 32 ventricular trabeculae from rat hearts. After the induction of Ca2+ waves by trains of electrical stimuli (400, 500, or 600 ms intervals) for 7.5 seconds, 23 Ca2+ waves in the absence of KB-R7943 and cilnidipine ([Ca2+]o = 2.3 +/- 0.2 mmol/L), 11 Ca2+ waves in the presence of 10 micromol/L KB-R7943 ([Ca2+]o = 2.5 +/- 0.5 mmol/L), and 8 Ca2+ waves in the presence of 1 micromol/L cilnidipine ([Ca]o = 4.1 +/- 0.3 mmol/L) were measured at a sarcomere length of 2.1 microm (23.9 +/- 0.8 degrees C).. The amplitude of DADs correlated with the velocity (r = 0.90) and the amplitude (r = 0.90) of Ca2+ waves. The amplitude of DADs was significantly decreased to approximately 40% of the initial value by 10 micromol/L KB-R7943.. These results suggest that the velocity and the amplitude of Ca2+ waves determine the formation of DADs principally through the activation of the Na+-Ca2+ exchange current, thereby inducing triggered arrhythmias in multicellular ventricular muscle.

    Topics: Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Calcium; Electric Stimulation; Electrophysiology; Heart; Heart Ventricles; In Vitro Techniques; Membrane Potentials; Myocardial Contraction; Myocytes, Cardiac; Rats; Sodium-Calcium Exchanger; Thiourea

2009
Effects of purified endogenous inhibitor of the Na+/Ca2+ exchanger on ouabain-induced arrhythmias in the atria and ventricle strips of guinea pig.
    European journal of pharmacology, 2006, Dec-28, Volume: 553, Issue:1-3

    Previous studies demonstrated that the purified endogenous inhibitor (NCX(IF)) of the cardiac Na(+)/Ca(2+) exchanger (NCX1) has the capacity to modulate cardiac muscle contractility. Here, we tested the effects of purified NCX(IF) on arrhythmias induced by ouabain in the atria and ventricle strips of guinea pig. For the sake of comparison NCX(IF) was compared to lidocaine and KB-R7943. In the ventricle strip, NCX(IF) ( approximately 10 U/ml) results in rapid, complete and stable inhibition of ouabain-induced arrhythmias (the inhibition of arrhythmia is not followed by revival of irregular contractions). Under similar experimental conditions the atria strips require somewhat higher doses of NCX(IF) (25-50 U/ml) for complete suppression of arrhythmia. In the atria strip, NCX(IF) (10-25 U/ml) increases the threshold dose (1 microM) of ouabain for arrhythmia onset 2.2+/-0.5-fold (n=5, p<0.05) as well as prolongs the lag-phase for arrhythmia appearance 4.0+/-0.5-fold (n=5, p<0.01). The lag period for arrhythmia onset was also lengthened (2.0+/-0.4-fold) by NCX(IF) in the ventricle strips (n=6, p<0.002). At low frequency of pacing (1 Hz), all three tested substances, lidocaine, KB-R7943, and NCX(IF) can effectively suppress the ouabain-induced arrhythmia. However, at higher frequency (2 Hz), lidocaine is ineffective in suppressing arrhythmia, whereas KB-R7943 becomes pro-arrhythmic. In contrast to reference drugs, NCX(IF) retains its anti-arrhythmic capacity at high frequencies, either in the atria (n=6, p<0.01) or ventricle (n=5, p<0.05) strips. In conclusion, NCX(IF) results in rapid, effective and stable suppression of arrhythmia both in the atria and ventricle preparations under conditions at which the reference drugs become ineffective.

    Topics: Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Cardiotonic Agents; Dose-Response Relationship, Drug; Guinea Pigs; Heart; Heart Atria; Heart Ventricles; Lidocaine; Myocardial Contraction; Ouabain; Sodium-Calcium Exchanger; Strophanthidin; Thiourea

2006
Inhibition of the reverse mode of the Na+/Ca2+ exchange by KB-R7943 augments arrhythmogenicity in the canine heart during rapid heart rates.
    Journal of electrocardiology, 2005, Volume: 38, Issue:3

    To test the hypothesis that the reverse mode of the Na+/Ca2+ exchange augmented by a rapid heart rate has an antiarrhythmic effect by shortening the action potential duration, we examined the effects of KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl] isothiourea methanesulfonate), a selective inhibitor of the reverse mode of the Na+/Ca2+ exchange, to attenuate this effect. We recorded the electrocardiogram, monophasic action potential (MAP), and left ventricular pressure in canine beating hearts. In comparison to the control, KB-R7943 significantly increased the QTc value and MAP duration. MAP alternans and left ventricular pressure alternans were observed after changing the cycle length to 300 milliseconds in the control studies. KB-R7943 magnified both types of alternans and produced spatially discordant alternans between right and left ventricles. Early after-depolarizations and nonsustained ventricular tachycardia occurred in the presence of KB-R7943. Our data suggest that the reverse mode of the Na+/Ca2+ exchange may contribute to suppression of arrhythmias by abbreviating action potential duration under pathophysiological conditions. This conclusion is based on further confirmation by future studies of the specificity of KB-R7943 for block of the reverse mode of the Na+/Ca2+ exchange.

    Topics: Action Potentials; Animals; Arrhythmias, Cardiac; Dogs; Electrocardiography; Female; Heart Rate; Heart Ventricles; Male; Myocardial Contraction; Sodium-Calcium Exchanger; Tachycardia, Ventricular; Thiourea; Ventricular Premature Complexes; Ventricular Pressure

2005
Effects of sodium-calcium exchange inhibitors, KB-R7943 and SEA0400, on aconitine-induced arrhythmias in guinea pigs in vivo, in vitro, and in computer simulation studies.
    The Journal of pharmacology and experimental therapeutics, 2004, Volume: 310, Issue:1

    The sodium-calcium exchange (NCX) plays a pivotal role in regulating contractility and electrical activity in the heart. However, the effects of NCX blockers on ventricular arrhythmias are still controversial. We examined the effects of KB-R7943 (KBR) and SEA0400 (SEA), two NCX blockers, on aconitine-induced arrhythmias in guinea pigs using the ECG recordings and the current-clamp method. Using Luo's and Rudy's computer model (1991 Circ Res 68:1501-1526) for ventricular myocytes, we simulated abnormal membrane activity produced by NCX inhibition. In the whole-animal model, KBR in a dose range of 1 to 30 mg/kg (intravenous) suppressed aconitine-induced arrhythmias dose-dependently, but 10 mg/kg of SEA did not suppress these arrhythmias. There was a difference in isolated ventricular myocytes also. KBR (10 microM) suppressed abnormal electrical activity induced by aconitine, but SEA (100 microM) did not show such effects. KBR (10 microM) significantly changed the shape of the action potential configurations (action potential duration at 50% repolarization), but SEA (1-100 microM) did not change these configurations. In the computer simulation study, the aconitine-induced abnormal electrical activity was mimicked by a negative shift of the kinetics of Na+ channels, and this was followed by additional suppression of NCX activity by 90% (mimicking the effect of NCX inhibitors), which enhanced abnormal membrane activity. Our results indicate that the inhibition of aconitine-induced arrhythmias by KBR, not by SEA, might result from a mechanism other than the inhibition of NCX, and thus the involvement of the NCX system plays an insignificant role in the aconitine-induced arrhythmias.

    Topics: Aconitine; Action Potentials; Aniline Compounds; Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Computer Simulation; Disease Models, Animal; Electrophysiology; Guinea Pigs; Heart Ventricles; Kinetics; Muscle Cells; Phenyl Ethers; Sodium Channels; Sodium-Calcium Exchanger; Thiourea

2004
Protective effects of SEA0400, a novel and selective inhibitor of the Na+/Ca2+ exchanger, on myocardial ischemia-reperfusion injuries.
    European journal of pharmacology, 2003, Jan-01, Volume: 458, Issue:1-2

    The Na(+)/Ca(2+) exchanger (NCX) is involved in myocardial ischemia-reperfusion injuries. We examined the effects of 2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline (SEA0400), a potent and selective inhibitor of NCX, on myocardial ischemia-reperfusion injury models. In canine cardiac sarcolemmal vesicles and rat cardiomyocytes, SEA0400 potently inhibited the Na(+)-dependent 45Ca(2+) uptake with an IC(50) value of 90 and 92 nM, compared with 2-[2-[4-(4-nitrobenzyloxy)phenyl]isothiourea (KB-R7943, 7.0 and 9.5 microM), respectively. In rat cardiomyocytes, SEA0400 (1 and 3 microM) attenuated the Ca(2+) paradox-induced cell death. In isolated rat Langendorff hearts, SEA0400 (0.3 and 1 microM) improved the cardiac dysfunction induced by low-pressure perfusion followed by normal perfusion. In anesthetized rats, SEA0400 (0.3 and 1 mg/kg, i.v.) reduced the incidence of ventricular fibrillation and mortality induced by occlusion of the left anterior descending coronary artery followed by reperfusion. These results suggest that SEA0400 is a most potent NCX inhibitor in the heart and that it has protective effects against myocardial ischemia-reperfusion injuries.

    Topics: Aniline Compounds; Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Calcium; Cell Survival; Cells, Cultured; Dogs; Guanidines; Heart; In Vitro Techniques; Male; Myocardial Reperfusion Injury; Myocardium; Myocytes, Cardiac; Phenyl Ethers; Rats; Rats, Sprague-Dawley; Rats, Wistar; Sarcolemma; Sodium-Calcium Exchanger; Sulfones; Thiourea

2003
Importance of Ca2+ influx by Na+/Ca2+ exchange under normal and sodium-loaded conditions in mammalian ventricles.
    Molecular and cellular biochemistry, 2003, Volume: 242, Issue:1-2

    Na+/Ca2+ exchange (NCX) is a major Ca2+ extrusion system in cardiac myocytes, but can also mediate Ca2+ influx and trigger sarcoplasmic reticulum Ca2+ release. Under conditions such as digitalis toxicity or ischemia/reperfusion, increased [Na+]i may lead to a rise in [Ca2+]i through NCX, causing Ca2+ overload and triggered arrhythmias. Here we used an agent which selectively blocks Ca2+ influx by NCX, KB-R7943 (KBR), and assessed twitch contractions and Ca2+ transients in rat and guinea pig ventricular myocytes loaded with indo-1. KBR (5 microM) did not alter control steady-state twitch contractions or Ca2+ transients at 0.5 Hz in rat, but significantly decreased them in guinea pig myocytes. When cells were Na+-loaded by perfusion of strophanthidin (50 microM), the addition of KBR reduced diastolic [Ca2+]i and abolished spontaneous Ca2+ oscillations. In guinea pig papillary muscles exposed to substrate-free hypoxic medium for 60 min, KBR (10 microM applied 10 min before and during reoxygenation) reduced both the incidence and duration of reoxygenation-induced arrhythmias. KBR also enhanced the recovery of developed tension after reoxygenation. It is concluded that (1) the importance of Ca2+ influx via NCX for normal excitation-contraction coupling is species-dependent, and (2) Ca2+ influx via NCX may be critical in causing myocardial Ca2+ overload and triggered activities induced by cardiac glycoside or reoxygenation.

    Topics: Animals; Arrhythmias, Cardiac; Calcium; Cells, Cultured; Electrochemistry; Female; Guinea Pigs; Heart Ventricles; In Vitro Techniques; Male; Muscle Contraction; Myocardium; Oxygen; Rats; Sodium; Sodium-Calcium Exchanger; Strophanthidin; Thiourea

2003
KB-R7943, a Na+/Ca2+ exchange inhibitor, does not suppress ischemia/reperfusion arrhythmias nor digitalis arrhythmias in dogs.
    Japanese journal of pharmacology, 2002, Volume: 90, Issue:3

    KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulfonate) has been used as a pharmacological tool to block the Ca(2+) influx-mode of the Na(+)/Ca(2+) exchanger, which is thought to contribute to ischemia/reperfusion and digitalis arrhythmias. We examined effects of KB-R7943 on ischemia/reperfusion arrhythmias in beagle dogs anesthetized with sodium pentobarbital. Lead II ECG and BP were measured. KB-R7943 or the solvent (10% DMSO) was injected i.v. as a bolus, and 5 min later, the left anterior descending coronary artery was occluded for 30 min followed by reperfusion. KB-R7943 at 5 or 10 mg/kg increased BP without changing ECG parameters including the heart rate. Although 5 mg/kg KB-R7943 deceased the number of arrhythmic beats during the ischemic period, mortality due to ischemia/reperfusion was not decreased by KB-R7943 (5 and 10 mg/kg). KB-R7943 at 5 mg/kg also did not suppress the ouabain-induced arrhythmias. These negative results suggest that Na(+)/Ca(2+) exchange inhibition may not be a useful strategy of suppressing arrhythmias.

    Topics: Animals; Arrhythmias, Cardiac; Blood Pressure; Dogs; Dose-Response Relationship, Drug; Electrocardiography; Female; Heart Rate; Male; Myocardial Ischemia; Myocardial Reperfusion Injury; Ouabain; Sodium-Calcium Exchanger; Thiourea; Time Factors

2002
Inhibition of Na+/Ca2+ exchange by KB-R7943: transport mode selectivity and antiarrhythmic consequences.
    American journal of physiology. Heart and circulatory physiology, 2001, Volume: 281, Issue:3

    The Na+/Ca2+ exchanger plays a prominent role in regulating intracellular Ca2+ levels in cardiac myocytes and can serve as both a Ca2+ influx and efflux pathway. A novel inhibitor, KB-R7943, has been reported to selectively inhibit the reverse mode (i.e., Ca2+ entry) of Na+/Ca2+ exchange transport, although many aspects of its inhibitory properties remain controversial. We evaluated the inhibitory effects of KB-R7943 on Na+/Ca2+ exchange currents using the giant excised patch-clamp technique. Membrane patches were obtained from Xenopus laevis oocytes expressing the cloned cardiac Na+/Ca2+ exchanger NCX1.1, and outward, inward, and combined inward-outward currents were studied. KB-R7943 preferentially inhibited outward (i.e., reverse) Na+/Ca2+ exchange currents. The inhibitory mechanism consists of direct effects on the transport machinery of the exchanger, with additional influences on ionic regulatory properties. Competitive interactions between KB-R7943 and the transported ions were not observed. The antiarrhythmic effects of KB-R7943 were then evaluated in an ischemia-reperfusion model of cardiac injury in Langendorff-perfused whole rabbit hearts using electrocardiography and measurements of left ventricular pressure. When 3 microM KB-R7943 was applied for 10 min before a 30-min global ischemic period, ventricular arrhythmias (tachycardia and fibrillation) associated with both ischemia and reperfusion were almost completely suppressed. The observed electrophysiological profile of KB-R7943 and its protective effects on ischemia-reperfusion-induced ventricular arrhythmias support the notion of a prominent role of Ca2+ entry via reverse Na+/Ca2+ exchange in this process.

    Topics: Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Binding, Competitive; Calcium; Cells, Cultured; Dose-Response Relationship, Drug; Electrocardiography; Heart; In Vitro Techniques; Ion Transport; Male; Oocytes; Patch-Clamp Techniques; Protein Isoforms; Rabbits; Reperfusion Injury; Sodium; Sodium-Calcium Exchanger; Thiourea; Ventricular Function, Left; Xenopus laevis

2001
Reperfusion-induced Ins(1,4,5)P(3) generation and arrhythmogenesis require activation of the Na(+)/Ca(2+) exchanger.
    Journal of molecular and cellular cardiology, 2001, Volume: 33, Issue:10

    Reperfusion of globally ischemic rat hearts causes rapid generation of inositol(1,4,5) trisphosphate [Ins(1,4,5)P(3)] and the development of arrhythmias, following stimulation of alpha(1)-adrenergic receptors by norepinephrine released from the cardiac sympathetic nerves. The heightened inositol phosphate response in reperfusion depends on the activation of the Na(+)/H(+) exchanger, which might reflect a central role for increased Ca(2+)following reverse mode activation of the Na(+)/Ca(2+) exchanger (NCX). Isolated, perfused rat hearts were subjected to 20 min ischemia followed by 2 min reperfusion and the content of Ins(1,4,5)P(3) measured by mass analysis or by anion-exchange high performance liquid chromatography (HPLC) following [(3)H]inositol labeling. Reperfusion caused generation of Ins(1,4,5)P(3) (1266+/-401 to 3387+/-256 cpm/g tissue, mean+/-s.e.m., n=6, P<0.01) and the development of arrhythmias. Inhibition of NCX either by reperfusion at low Ca(2+) (1133+/-173 cpm/g tissue, mean+/-s.e.m., n=6, P<0.01 relative to reperfusion control) or by adding 10 microm KB-R7943, an inhibitor of reverse mode Na(+)/Ca(2+) exchange, prevented the Ins(1,4,5)P(3) response (1151+/-243 cpm/g tissue, mean+/-s.e.m., n=6, P<0.01 relative to reperfusion control) and the development of ventricular fibrillation. Lower concentrations of KB-R7943 were less effective. Reverse mode activation of NCX is therefore required for the enhanced Ins(1,4,5)P(3) response in early reperfusion, and inhibitors of this transporter may be useful in the prevention of arrhythmias under such conditions.

    Topics: Animals; Arrhythmias, Cardiac; Calcium; Chromatography, High Pressure Liquid; Dose-Response Relationship, Drug; Heart; Inositol 1,4,5-Trisphosphate; Lithium Chloride; Male; Models, Biological; Myocardium; Norepinephrine; Perfusion; Rats; Rats, Sprague-Dawley; Reperfusion; Sodium-Calcium Exchanger; Thiourea

2001
Reperfusion arrhythmias: new insights into the role of the Na(+)/Ca(2+) exchanger.
    Journal of molecular and cellular cardiology, 2001, Volume: 33, Issue:12

    Topics: Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Disease Models, Animal; Humans; Inositol 1,4,5-Trisphosphate; Myocardial Reperfusion; Rats; Sodium-Calcium Exchanger; Thiourea

2001
Effects of a selective inhibitor of Na+/Ca2+ exchange, KB-R7943, on reoxygenation-induced injuries in guinea pig papillary muscles.
    Journal of cardiovascular pharmacology, 2000, Volume: 35, Issue:1

    The effects of a novel agent that is reported to selectively block Ca2+ influx by Na+/Ca2+ exchange (NCX), KB-R7943, on the reoxygenation-induced arrhythmias and the recovery of developed tension after reoxygenation, were investigated in guinea pig papillary muscles. KB-R7943 dose-dependently suppressed the contracture tension during low-sodium (21.9 mM) perfusion (23+/-8% of steady-state developed tension at 10 microM vs. 56+/-11% in control; n = 6, p<0.05), but did not change action potential and contractile parameters. During the reoxygenation period after 60-min substrate-free hypoxia, KB-R7943 (10 microM) significantly decreased the incidence of arrhythmias (44 vs. 100% in control; n = 9, p <0.05) and shortened the duration of arrhythmias (16+/-11 vs. 72+/-14 s; p<0.01). KB-R7943 (10 microM) significantly enhanced the recovery of developed tension after reoxygenation (83+/-4 vs. 69+/-3% in control; p<0.05). We conclude that KB-R7943 (10 microM) selectively inhibits the reverse mode of NCX, and that it attenuates reoxygenation-induced arrhythmic activity and prevents contractile dysfunction in guinea pig papillary muscles. These results suggest that Ca2+ influx by NCX may play a key role in reoxygenation injury.

    Topics: Action Potentials; Animals; Arrhythmias, Cardiac; Calcium; Electrophysiology; Guinea Pigs; Heart; Hypoxia; In Vitro Techniques; Male; Myocardial Contraction; Myocardium; Oxygen Consumption; Papillary Muscles; Sodium-Calcium Exchanger; Thiourea

2000
Effect of Na+/Ca2+ exchange inhibitor, KB-R7943 on ouabain-induced arrhythmias in guinea-pigs.
    British journal of pharmacology, 1999, Volume: 127, Issue:8

    1. We investigated protective effects of KB-R7943, a Na+/Ca2+ exchange (NCX) inhibitor, on ouabain-induced tonotropy and arrhythmias in isolated whole atria and ouabain-induced changes in electrocardiogram (ECG) in the guinea-pig. 2. KB-R7943 (10 and 30 microM) suppressed the tonotropic effect of ouabain, and prolonged the onset time of extra-systole induced by ouabain in isolated atria. 3. The intravenous injection of KB-R7943 (1 and 3 mg kg-1) significantly increased the doses of ouabain required to induce ventricular premature beats (VPB), ventricular tachycardia (VT), ventricular fibrillation (VF) and cardiac arrest (CA) in anaesthetized guinea-pigs. 4. Lidocaine (Na+channel inhibitor) and R56865 (Na+ and Ca2+ overload inhibitor) also suppressed the ouabain-induced tonotropic effect and extra-systole in isolated atria, but Hoe-694 (Na+/H+ exchange inhibitor) or diltiazem (Ca2+ channel inhibitor) did not affect them. 5. Lidocaine also increased the doses of ouabain required to induce VPB, VT, VF and CA in anaesthetized guinea-pigs. 6. From these results, we conclude that KB-R7943 suppresses ouabain-induced arrhythmias through inhibition of the reverse-mode NCX.

    Topics: Animals; Arrhythmias, Cardiac; Atrial Function; Cardiotonic Agents; Guinea Pigs; Lidocaine; Male; Ouabain; Sodium-Calcium Exchanger; Thiourea; Vasoconstrictor Agents

1999