kb-2115 has been researched along with Non-alcoholic-Fatty-Liver-Disease* in 3 studies
1 review(s) available for kb-2115 and Non-alcoholic-Fatty-Liver-Disease
Article | Year |
---|---|
Thyroid Hormone Analogues: An Update.
The development of thyroid hormone (TH) analogues was prompted by the attempt to exploit the effects of TH on lipid metabolism, avoiding cardiac thyrotoxicosis. Analysis of the relative distribution of the α and β subtypes of nuclear TH receptors (TRα and TRβ) showed that TRα and TRβ are responsible for cardiac and metabolic responses, respectively. Therefore, analogues with TRβ selectivity were developed, and four different compounds have been used in clinical trials: GC-1 (sobetirome), KB-2115 (eprotirome), MB07344/VK2809, and MGL-3196 (resmetirom). Each of these compounds was able to reduce low-density lipoprotein cholesterol, but a phase 3 trial with eprotirome was interrupted because of a significant increase in liver enzymes and the contemporary report of cartilage side effects in animals. As a consequence, the other projects were terminated as well. However, in recent years, TRβ agonists have raised new interest for the treatment of nonalcoholic fatty liver disease (NAFLD). After obtaining excellent results in experimental models, clinical trials have been started with MGL-3196 and VK2809, and the initial reports are encouraging. Sobetirome turned out to be effective also in experimental models of demyelinating disease. Aside TRβ agonists, TH analogues include some TH metabolites that are biologically active on their own, and their synthetic analogues. 3,5,3'-triiodothyroacetic acid has already found clinical use in the treatment of some cases of TH resistance due to TRβ mutations, and interesting results have recently been reported in patients with the Allan-Herndon-Dudley syndrome, a rare disease caused by mutations in the TH transporter MCT8. 3,5-diiodothyronine (T2) has been used with success in rat models of dyslipidemia and NAFLD, but the outcome of a clinical trial with a synthetic T2 analogue was disappointing. 3-iodothyronamine (T1AM) is the last entry in the group of active TH metabolites. Promising results have been obtained in animal models of neurological injury induced by β-amyloid or by convulsive agents, but no clinical data are available so far. Topics: Acetates; Anilides; Animals; Central Nervous System Diseases; Clinical Trials as Topic; Diiodothyronines; Drug Design; Dyslipidemias; Humans; Liver Diseases; Male; Mice; Mutation; Non-alcoholic Fatty Liver Disease; Phenols; Pyridazines; Rats; Signal Transduction; Thyroid Hormone Receptors alpha; Thyroid Hormone Receptors beta; Thyroid Hormones; Thyronines; Triiodothyronine; Uracil | 2020 |
2 other study(ies) available for kb-2115 and Non-alcoholic-Fatty-Liver-Disease
Article | Year |
---|---|
The amelioration of hepatic steatosis by thyroid hormone receptor agonists is insufficient to restore insulin sensitivity in ob/ob mice.
Thyroid hormone receptor (TR) agonists have been proposed as therapeutic agents to treat non-alcoholic fatty liver disease (NAFLD) and insulin resistance. We investigated the ability of the TR agonists GC-1 and KB2115 to reduce hepatic steatosis in ob/ob mice. Both compounds markedly reduced hepatic triglyceride levels and ameliorated hepatic steatosis. However, the amelioration of fatty liver was not sufficient to improve insulin sensitivity in these mice and reductions in hepatic triglycerides did not correlate with improvements in insulin sensitivity or glycemic control. Instead, the effects of TR activation on glycemia varied widely and were found to depend upon the time of treatment as well as the compound and dosage used. Lower doses of GC-1 were found to further impair glycemic control, while a higher dose of the same compound resulted in substantially improved glucose tolerance and insulin sensitivity, despite all doses being equally effective at reducing hepatic triglyceride levels. Improvements in glycemic control and insulin sensitivity were observed only in treatments that also increased body temperature, suggesting that the induction of thermogenesis may play a role in mediating these beneficial effects. These data illustrate that the relationship between TR activation and insulin sensitivity is complex and suggests that although TR agonists may have value in treating NAFLD, their effect on insulin sensitivity must also be considered. Topics: Acetates; Anilides; Animals; Blood Glucose; Body Temperature; Dose-Response Relationship, Drug; Enzyme Induction; Glucose-6-Phosphatase; Insulin Resistance; Male; Mice; Mice, Obese; Non-alcoholic Fatty Liver Disease; Phenols; Receptors, Thyroid Hormone; Time Factors | 2015 |
Thyroid hormone receptor-β agonists prevent hepatic steatosis in fat-fed rats but impair insulin sensitivity via discrete pathways.
Liver-specific thyroid hormone receptor-β (TRβ)-specific agonists are potent lipid-lowering drugs that also hold promise for treating nonalcoholic fatty liver disease and hepatic insulin resistance. We investigated the effect of two TRβ agonists (GC-1 and KB-2115) in high-fat-fed male Sprague-Dawley rats treated for 10 days. GC-1 treatment reduced hepatic triglyceride content by 75%, but the rats developed fasting hyperglycemia and hyperinsulinemia, attributable to increased endogenous glucose production (EGP) and diminished hepatic insulin sensitivity. GC-1 also increased white adipose tissue lipolysis; the resulting increase in glycerol flux may have contributed to the increase in EGP. KB-2115, a more TRβ- and liver-specific thyromimetic, also prevented hepatic steatosis but did not induce fasting hyperglycemia, increase basal EGP rate, or diminish hepatic insulin sensitivity. Surprisingly, insulin-stimulated peripheral glucose disposal was diminished because of a decrease in insulin-stimulated skeletal muscle glucose uptake. Skeletal muscle insulin signaling was unaffected. Instead, KB-2115 treatment was associated with a decrease in GLUT4 protein content. Thus, although both GC-1 and KB-2115 potently treat hepatic steatosis in fat-fed rats, they each worsen insulin action via specific and discrete mechanisms. The development of future TRβ agonists must consider the potential adverse effects on insulin sensitivity. Topics: Acetates; Anilides; Animals; Dietary Fats; Fatty Liver; Gene Expression; Gluconeogenesis; Glucose Transporter Type 4; Hyperglycemia; Hyperinsulinism; Insulin Resistance; Male; Muscle, Skeletal; Non-alcoholic Fatty Liver Disease; Phenols; Rats; Rats, Sprague-Dawley; Signal Transduction; Thyroid Hormone Receptors beta; Triglycerides | 2013 |