kava has been researched along with Inflammation* in 4 studies
4 other study(ies) available for kava and Inflammation
Article | Year |
---|---|
Identification of a Kavain Analog with Efficient Anti-inflammatory Effects.
Kavain, a compound derived from Piper methysticum, has demonstrated anti-inflammatory properties. To optimize its drug properties, identification and development of new kavain-derived compounds was undertaken. A focused library of analogs was synthesized and their effects on Porphyromonas gingivalis (P. gingivalis) elicited inflammation were evaluated in vitro and in vivo. The library contained cyclohexenones (5,5-dimethyl substituted cyclohexenones) substituted with a benzoate derivative at the 3-position of the cyclohexanone. The most promising analog identifed was a methylated derivative of kavain, Kava-205Me (5,5-dimethyl-3-oxocyclohex-1-en-1-yl 4-methylbenzoate.) In an in vitro assay of anti-inflammatory effects, murine macrophages (BMM) and THP-1 cells were infected with P. gingivalis (MOI = 20:1) and a panel of cytokines were measured. Both cell types treated with Kava-205Me (10 to 200 μg/ml) showed significantly and dose-dependently reduced TNF-α secretion induced by P. gingivalis. In BMM, Kava-205Me also reduced secretion of other cytokines involved in the early phase of inflammation, including IL-12, eotaxin, RANTES, IL-10 and interferon-γ (p < 0.05). In vivo, in an acute model of P. gingivalis-induced calvarial destruction, administration of Kava-205Me significantly improved the rate of healing associated with reduced soft tissue inflammation and osteoclast activation. In an infective arthritis murine model induced by injection of collagen-antibody (ArthriomAb) + P. gingivalis, administration of Kava-205Me was able to reduce efficiently paw swelling and joint destruction. These results highlight the strong anti-inflammatory properties of Kava-205Me and strengthen the interest of testing such compounds in the management of P. gingivalis elicited inflammation, especially in the management of periodontitis. Topics: Animals; Anti-Inflammatory Agents; Arthritis, Experimental; Bone Resorption; Cytokines; Inflammation; Kava; Lipopolysaccharides; Macrophages; Male; Mice; Mice, Inbred DBA; Plant Extracts; Porphyromonas gingivalis; Skull | 2019 |
A plant kavalactone desmethoxyyangonin prevents inflammation and fulminant hepatitis in mice.
Alpinia pricei Hayata is a Formosan plant which has been popularly used as nutraceutical or folk medicine for inflammation and various disorders. An active compound of the plant rhizomes, desmethoxyyangonin (DMY), was identified in this study for its novel effect against endotoxin lipopolysaccharide (LPS)-stimulated inflammation in murine macrophages and LPS/D-galactosamine (LPS/D-GalN)-induced fulminant hepatitis in mice. DMY was observed to significantly inhibit proliferation and activation of T cells ex vivo and the activity of several pro-inflammatory mediators in vitro. DMY also protected LPS/D-GalN-induced acute hepatic damages in mice through inhibiting aminotransferases activities and infiltrations of inflammatory macrophages, neutrophils and pathogenic T cells into the liver tissues. In addition, pretreatment with DMY significantly improved the survival rate of LPS/D-GalN-treated mice to 90% (9/10), compared to LPS/D-GalN-treated group (40%, 4/10). UPLC/MS platform-based comparative metabolomics approach was used to explore the serum metabolic profile in fulminant hepatic failure (FHF) mice with or without the DMY pretreatment. The results showed that LPS/D-GalN-induced hepatic damage is likely through perturbing amino acid metabolism, which leads to decreased pyruvate formation via catalysis of aminotransferases, and DMY treatment can prevent to a certain degree of these alterations in metabolic network in mouse caused by LPS/D-GalN. Mechanistic investigation demonstrated that DMY protects LPS or LPS/D-GalN-induced damages in cell or liver tissues mainly through de-regulating IKK/NFκB and Jak2/STAT3 signaling pathways. This report provides evidence-based knowledge to support the rationale for the use of A. pricei root extract in anti-inflammation and also its new function as hepatoprotetive agent against fulminant hepatitis. Topics: Animals; Cell Line; Cytoprotection; Galactosamine; Gene Expression Regulation, Enzymologic; Hepatitis; Inflammation; Interleukin-6; Kava; Lipopolysaccharides; Liver; Macrophages; Male; Metabolomics; Mice; Mice, Inbred ICR; Multivariate Analysis; Neutrophils; Nitric Oxide; Nitric Oxide Synthase Type II; Phosphorylation; Pyrones; STAT3 Transcription Factor | 2013 |
Does inflammation play a role in kava hepatotoxicity?
The pathophysiology of kava hepatotoxicity remains inconclusive. There is circumstantial evidence for the roles of toxic metabolites, inhibition of cyclooxygenase (COX) enzymes and depletion of liver glutathione. Pharmacogenomic effects are likely, particularly for Cytochrome P450 genes. Experimental and clinical cases of hepatotoxicity show evidence of hepatitis. The question remains whether this inflammation is caused by components of kava directly, or indirectly due to the downstream effects. Topics: Chemical and Drug Induced Liver Injury; Humans; Inflammation; Kava | 2011 |
[ANTAGONISTIC EFFECTS OF GEUNINE KAWA PYRONES IN EXPERIMENTAL INFLAMMATIONS AND FEVER].
Topics: Fever; History; Humans; Inflammation; Kava; Pyrans; Pyrones | 1965 |