kallidin and Heart-Failure

kallidin has been researched along with Heart-Failure* in 4 studies

Reviews

1 review(s) available for kallidin and Heart-Failure

ArticleYear
The kallikrein-kinin system in humans.
    Clinical and experimental pharmacology & physiology, 2001, Volume: 28, Issue:12

    1. Kinin peptides are implicated in many physiological and pathological processes, including the regulation of blood pressure and sodium homeostasis, inflammation and the cardioprotective effects of preconditioning. In humans, the plasma and tissue kallikrein-kinin systems (KKS) generate bradykinin and kallidin peptides, respectively. 2. We established methodology for the measurement of bradykinin and kallidin peptides and their metabolites in order to study the function of the plasma and tissue KKS in humans. 3. Bradykinin peptides were more abundant than kallidin peptides in blood and cardiac atrial tissue, whereas kallidin peptides were predominant in urine. The levels of kinin peptides in tissue were higher than in blood, confirming the primary tissue localization of the KKS. 4. Angiotensin-converting enzyme inhibition increased blood levels of bradykinin and kallidin peptides. 5. Blood levels of kallidin peptides were suppressed in patients with severe cardiac failure, indicating that the activity of the tissue KKS is suppressed in this condition. 6. Bradykinin peptide levels were increased in the urine of patients with interstitial cystitis, suggesting a role for these peptides in the pathogenesis and/or symptomatology of this condition. 7. Cardiopulmonary bypass, a model of activation of the contact system, activated both the plasma and tissue KKS. 8. Measurement of individual bradykinin and kallidin peptides and their metabolites gives important information about the operation of the plasma and tissue KKS and their role in physiology and disease states.

    Topics: Amino Acid Sequence; Angiotensin-Converting Enzyme Inhibitors; Bradykinin; Cardiopulmonary Bypass; Cystitis, Interstitial; Heart Failure; Humans; Kallidin; Kallikrein-Kinin System

2001

Trials

2 trial(s) available for kallidin and Heart-Failure

ArticleYear
Vascular B1 kinin receptors in patients with congestive heart failure.
    Journal of cardiovascular pharmacology, 2008, Volume: 52, Issue:5

    Animal models suggest a vasomotor role for the B1 kinin receptor in cardiovascular disease states. In patients with heart failure treated with angiotensin-converting enzyme inhibition (ACEi), or combined B1/B2 receptor antagonism, but not B2 receptor antagonism alone, causes vasoconstriction. However, B1 agonism has no effect on vasomotor or fibrinolytic function. Findings from transgenic animals lacking the B2 receptor suggest that these conflicting data may be explained by cross-talk between B1 and B2 receptors. We hypothesized that B1 stimulation causes vasodilatation and tissue plasminogen activator release in the human forearm when B2 receptor signaling is inhibited. Forearm blood flow was measured in 16 patients with heart failure receiving ACEi. In double-blinded crossover studies, intrabrachial Lys-[Leu8]-des-Arg9-bradykinin (B1 antagonist), lys-des-Arg9-bradykinin (B1 agonist), bradykinin (B2 agonist), and sodium nitroprusside (endothelium-independent vasodilator) were infused alone or with HOE-140 (B2 antagonist). HOE-140 did not affect basal vascular tone or t-PA release, but it abolished bradykinin-induced vasodilatation and t-PA release (P < 0.0001). Blood flow and t-PA release were unaffected by B1 agonism or antagonism in the presence and absence HOE-140. Our findings do not support a role for crosstalk between the B1 and B2 kinin receptors in the human peripheral circulation.

    Topics: Adult; Aged; Angiotensin-Converting Enzyme Inhibitors; Blood Pressure; Bradykinin; Bradykinin B1 Receptor Antagonists; Bradykinin B2 Receptor Antagonists; Cross-Over Studies; Double-Blind Method; Female; Heart Failure; Humans; Infusions, Intra-Arterial; Kallidin; Middle Aged; Nitroprusside; Receptor, Bradykinin B1; Receptor, Bradykinin B2; Regional Blood Flow; Tissue Plasminogen Activator; Vasodilation

2008
B1 kinin receptor does not contribute to vascular tone or tissue plasminogen activator release in the peripheral circulation of patients with heart failure.
    Arteriosclerosis, thrombosis, and vascular biology, 2005, Volume: 25, Issue:4

    Vascular expression of the B1 kinin receptor is markedly upregulated with left ventricular dysfunction and angiotensin-converting enzyme (ACE) inhibition, but its function remains unclear. Inhibitors of ACE potentiate bradykinin-mediated B2 receptor-dependent vasodilatation and tissue plasminogen activator (tissue-type plasminogen activator [t-PA]) release. We investigated the contribution of the B1 receptor to the maintenance of vascular tone and t-PA release in patients with heart failure.. Eleven patients were treated with enalapril (10 mg twice daily) or losartan (50 mg twice daily) in a randomized double-blind crossover trial. During week 6 of each treatment, patients received an intrabrachial infusion of Lys-des-Arg9-bradykinin (B1 agonist; 1 to 10 nmol/min), bradykinin (30 to 300 pmol/min), Lys-[Leu8]-des-Arg9-bradykinin (B1 antagonist; 1 to 10 nmol/min), and norepinephrine (60 to 540 pmol/min). Blood flow and t-PA release were measured using venous occlusion plethysmography and blood sampling. Bradykinin (P<0.001 for all), but not Lys-des-Arg9-bradykinin, caused vasodilatation and t-PA antigen and activity release. Norepinephrine (P<0.001), but not Lys-[Leu8]-des-Arg9-bradykinin, caused vasoconstriction. Compared with losartan, enalapril augmented bradykinin-mediated vasodilatation (P<0.05) and t-PA release (P<0.01 for all) but had no effect on B(1) receptor-mediated responses.. The B1 kinin receptor does not have a major vasomotor or fibrinolytic role in patients with heart failure. Augmentation of kinin-mediated vasodilatation and t-PA release by ACE inhibition is restricted to the B2 receptor.

    Topics: Adolescent; Aged; Angiotensin-Converting Enzyme Inhibitors; Antihypertensive Agents; Bradykinin B1 Receptor Antagonists; Cross-Over Studies; Enalapril; Female; Fibrinolysis; Forearm; Heart Failure; Humans; In Vitro Techniques; Kallidin; Losartan; Male; Middle Aged; Plasminogen Activator Inhibitor 1; Pregnancy; Receptor, Bradykinin B1; Regional Blood Flow; Tissue Plasminogen Activator; Umbilical Veins; Vasoconstriction

2005

Other Studies

1 other study(ies) available for kallidin and Heart-Failure

ArticleYear
Kallidin- and bradykinin-degrading pathways in human heart: degradation of kallidin by aminopeptidase M-like activity and bradykinin by neutral endopeptidase.
    Circulation, 1999, Apr-20, Volume: 99, Issue:15

    Since kinins kallidin (KD) and bradykinin (BK) appear to have cardioprotective effects ranging from improved hemodynamics to antiproliferative effects, inhibition of kinin-degrading enzymes should potentiate such effects. Indeed, it is believed that this mechanism is partly responsible for the beneficial effects of angiotensin-converting enzyme (ACE) inhibitors. In the heart, enzymes other than ACE may contribute to local degradation of kinins. The purpose of this study was to investigate which enzymes are responsible for the degradation of KD and BK in human heart tissue.. Cardiac membranes were prepared from the left ventricles of normal (n=5) and failing (n=10) hearts. The patients had end-stage congestive heart failure as the result of coronary heart disease or idiopathic dilated cardiomyopathy. Heart tissue was incubated with KD or BK in the presence or absence of enzyme inhibitors. We found no difference in the enzymes responsible for kinin metabolism or their activities between normal and failing hearts. Thus KD was mostly converted into BK by the aminopeptidase M-like activity. When BK was used as substrate, it was converted into an inactive metabolite BK-(1-7) mostly (80% to 90%) by the neutral endopeptidase (NEP) activity, with ACE unexpectedly playing only a minor role. The low enzymatic activity of ACE in the cardiac membranes, compared with that of NEP, was not due to chronic ACE inhibitor therapy, because the cardiac ACE activities of patients, whether receiving ACE inhibitors or not, and of normal subjects were all equal.. The present in vitro study shows that in human cardiac membranes, the most critical step in kinin metabolism, that is, inactivation of BK, appears to be mediated mostly by NEP. This observation suggests a role for NEP in the local control of BK concentration in heart tissue. Thus inhibition of cardiac NEP activity could be cardioprotective by elevating the local concentration of BK in the heart.

    Topics: Angiotensin-Converting Enzyme Inhibitors; Anti-Bacterial Agents; Bradykinin; Captopril; CD13 Antigens; Dipeptides; Female; Glycopeptides; Heart Failure; Humans; Kallidin; Leucine; Male; Membrane Proteins; Middle Aged; Myocardium; Neprilysin; Peptides; Peptidyl-Dipeptidase A; Protease Inhibitors; Substrate Specificity

1999