kallidin and Colitis

kallidin has been researched along with Colitis* in 2 studies

Other Studies

2 other study(ies) available for kallidin and Colitis

ArticleYear
The relevance of kinin B1 receptor upregulation in a mouse model of colitis.
    British journal of pharmacology, 2008, Volume: 154, Issue:6

    Kinins are implicated in many pathophysiological conditions, and recent evidence has suggested their involvement in colitis. This study assessed the role of the kinin B1 receptors in a mouse model of colitis.. Colitis was induced in mice by 2,4,6-trinitrobenzene sulphonic acid (TNBS), and tissue damage and myeloperoxidase activity were assessed. B1 receptor induction was analysed by organ bath studies, binding assay and reverse transcription PCR.. TNBS-induced colitis was associated with tissue damage, neutrophil infiltration and time-dependent increase of colon B1 receptor-mediated contraction, with the maximal response observed at 72 h. The upregulation of the B1 receptor at this time point was also confirmed by means of binding studies. B1 receptor mRNA levels were elevated as early as 6 h after colitis induction and remained high for up to 48 h. TNBS-evoked tissue damage and neutrophil influx were reduced by the selective B1 receptor antagonist SSR240612, and in B1 receptor knockout mice. In vivo treatment with inhibitors of protein synthesis, nuclear factor-kappaB activation, inducible nitric oxide synthase (iNOS) or tumour necrosis factor alpha (TNFalpha) significantly reduced B1 receptor agonist-induced contraction. Similar results were observed in iNOS and TNF receptor 1-knockout mice.. These results provide convincing evidence on the role of B1 receptors in the pathogenesis of colitis. Therefore, the blockade of kinin B1 receptors might represent a new therapeutic option for treating inflammatory bowel diseases.

    Topics: Animals; Colitis; Colon; In Vitro Techniques; Indicators and Reagents; Kallidin; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; NF-kappa B; Nitric Oxide Synthase Type II; Peroxidase; Receptor, Bradykinin B1; Reverse Transcriptase Polymerase Chain Reaction; Trinitrobenzenesulfonic Acid; Tumor Necrosis Factor-alpha; Up-Regulation

2008
Pharmacological and biochemical characterization of bradykinin B2 receptors in the mouse colon: influence of the TNBS-induced colitis.
    Regulatory peptides, 2007, Jun-07, Volume: 141, Issue:1-3

    This study analyzed bradykinin (BK)-evoked contractile responses in the mouse colon under normal and inflammatory conditions. BK and the preferential B(2) receptor agonists Hyp(3)-BK, Lys-BK, Met-Lys-BK and Tyr(8)-BK produced a marked and concentration-related contraction of the normal mouse colon, whereas the selective B(1) receptor agonist des-Arg(9)-BK had no effect. BK-induced contraction was concentration-dependently antagonized (in a non-competitive manner) by both B(2) receptor antagonists Hoe 140 and FR173657, but not the B(1) receptor antagonist des-Arg(9)-[Leu(8)]-BK. Analysis of the possible mechanisms implicated in the contractile responses of BK in the mouse colon revealed the involvement of the neural release of acetylcholine, the activation of L- and N-type voltage-gated calcium channels, and the release of neuropeptides, prostanoids and leukotrienes. The contraction induced by BK was markedly increased in preparations obtained from TNBS-treated mice. The up-regulation of B(2) receptors following the induction of colitis was confirmed with binding studies using [(3)H]-BK, which revealed a marked increase in B(2) receptor densities, without alterations of affinity. We provide convincing evidence on the relevance of B(2) receptors in the mouse colon under normal conditions, as well as under an inflammatory profile of colitis. Selective B(2) receptor antagonists might well represent rational therapeutic options for treating inflammatory bowel diseases.

    Topics: Acetylcholine; Animals; Bradykinin; Bradykinin B2 Receptor Antagonists; Calcium Channels, L-Type; Calcium Channels, N-Type; Colitis; Colon; Dose-Response Relationship, Drug; Kallidin; Leukotrienes; Male; Mice; Muscle Contraction; Neuropeptides; Prostaglandins; Quinolines; Receptor, Bradykinin B2; Trinitrobenzenesulfonic Acid

2007