Page last updated: 2024-08-21

kainic acid and Motor Neuron Disease

kainic acid has been researched along with Motor Neuron Disease in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's2 (33.33)18.2507
2000's4 (66.67)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Gohar, M; Humayun, S; Leystra-Lantz, C; McLean, J; Mepham, J; Moisse, K; Strong, MJ; Volkening, K1
Boccitto, M; Clardy, J; Driscoll, M; Georgiades, SN; Kalb, RG; Liu, Y; Mano, I; Merry, D; Mojsilovic-Petrovic, J; Nedelsky, N; Neve, RL; Taylor, JP; Zhou, W1
Brunet, N; Calderó, J; Esquerda, JE; Tarabal, O1
Anderton, BH; Leigh, PN; Meldrum, BS; Nunn, PB; Willis, CL1
Chinnery, RM; Ince, PG; Shaw, PJ1
Akaike, A; Honda, K; Inoue, R; Kihara, T; Nakamizo, T; Sawada, H; Shimohama, S; Urushitani, M1

Other Studies

6 other study(ies) available for kainic acid and Motor Neuron Disease

ArticleYear
The complement factor C5a receptor is upregulated in NFL-/- mouse motor neurons.
    Journal of neuroimmunology, 2009, May-29, Volume: 210, Issue:1-2

    Topics: Amyotrophic Lateral Sclerosis; Animals; Complement C5a; Disease Models, Animal; Excitatory Amino Acid Agonists; Kainic Acid; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Motor Neuron Disease; Motor Neurons; Nerve Degeneration; Neurofilament Proteins; Neurotoxins; Receptor, Anaphylatoxin C5a; Up-Regulation

2009
FOXO3a is broadly neuroprotective in vitro and in vivo against insults implicated in motor neuron diseases.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2009, Jun-24, Volume: 29, Issue:25

    Topics: Animals; Blotting, Western; Cell Count; Cell Culture Techniques; Cell Death; Computational Biology; Disease Models, Animal; Drosophila; Embryo, Mammalian; Excitatory Amino Acid Agonists; Female; Fluorescence; Forkhead Box Protein O3; Forkhead Transcription Factors; Immunohistochemistry; Kainic Acid; Mice; Mice, Inbred C57BL; Motor Neuron Disease; Motor Neurons; Neuroprotective Agents; Rats; Rats, Sprague-Dawley; Signal Transduction; Spinal Cord; Tyrosine

2009
Excitotoxic motoneuron degeneration induced by glutamate receptor agonists and mitochondrial toxins in organotypic cultures of chick embryo spinal cord.
    The Journal of comparative neurology, 2009, Oct-01, Volume: 516, Issue:4

    Topics: Animals; Calcium Signaling; Chick Embryo; Disease Models, Animal; Dose-Response Relationship, Drug; Excitatory Amino Acid Agonists; Glutamic Acid; Kainic Acid; Malonates; Mitochondria; Motor Neuron Disease; Motor Neurons; N-Methylaspartate; Nerve Degeneration; Neuroprotective Agents; Neurotoxins; Nitro Compounds; Organ Culture Techniques; Propionates; Riluzole; Spinal Cord

2009
Neuroprotective effect of free radical scavengers on beta-N-oxalylamino-L-alanine (BOAA)-induced neuronal damage in rat hippocampus.
    Neuroscience letters, 1994, Dec-05, Volume: 182, Issue:2

    Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Dose-Response Relationship, Drug; Free Radical Scavengers; Hippocampus; Kainic Acid; Male; Motor Neuron Disease; N-Methylaspartate; Neurons; Rats; Rats, Wistar

1994
Non-NMDA receptors in motor neuron disease (MND): a quantitative autoradiographic study in spinal cord and motor cortex using [3H]CNQX and [3H]kainate.
    Brain research, 1994, Aug-29, Volume: 655, Issue:1-2

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Adult; Aged; Autoradiography; Female; Humans; Kainic Acid; Male; Middle Aged; Motor Cortex; Motor Neuron Disease; Nerve Degeneration; Receptors, AMPA; Receptors, Glutamate; Receptors, Kainic Acid; Spinal Cord

1994
N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca(2+) influx.
    Journal of neuroscience research, 2001, Mar-01, Volume: 63, Issue:5

    Topics: 2,4-Dinitrophenol; 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Calcium; Calcium Signaling; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Calcium-Calmodulin-Dependent Protein Kinases; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Cells, Cultured; Cyclosporine; Dibucaine; Dizocilpine Maleate; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Fluoresceins; Fluorescent Dyes; Glutamic Acid; Heterocyclic Compounds, 3-Ring; Imidazoles; Kainic Acid; Mitochondria; Motor Neuron Disease; Motor Neurons; N-Methylaspartate; Nerve Tissue Proteins; Neurons; Neurotoxins; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Oxidative Stress; Rats; Rats, Wistar; Reactive Oxygen Species; Receptors, AMPA; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Rhodamines; Spinal Cord; Superoxide Dismutase; Uncoupling Agents

2001