kaf156 and Malaria

kaf156 has been researched along with Malaria* in 7 studies

Reviews

5 review(s) available for kaf156 and Malaria

ArticleYear
An insight into the recent development of the clinical candidates for the treatment of malaria and their target proteins.
    European journal of medicinal chemistry, 2021, Jan-15, Volume: 210

    Malaria is an endemic disease, prevalent in tropical and subtropical regions which cost half of million deaths annually. The eradication of malaria is one of the global health priority nevertheless, current therapeutic efforts seem to be insufficient due to the emergence of drug resistance towards most of the available drugs, even first-line treatment ACT, unavailability of the vaccine, and lack of drugs with a new mechanism of action. Intensification of antimalarial research in recent years has resulted into the development of single dose multistage therapeutic agents which has advantage of overcoming the antimalarial drug resistance. The present review explored the current progress in the development of new promising antimalarials against prominent target proteins that have the potential to be a clinical candidate. Here, we also reviewed different aspects of drug resistance and highlighted new drug candidates that are currently in a clinical trial or clinical development, along with a few other molecules with excellent antimalarial activity overs ACTs. The summarized scientific value of previous approaches and structural features of antimalarials related to the activity are highlighted that will be helpful for the development of next-generation antimalarials.

    Topics: Animals; Antimalarials; Drug Development; Drug Resistance; Humans; Malaria; Molecular Targeted Therapy; Plasmodium; Protozoan Proteins; Small Molecule Libraries

2021
The Development Process for Discovery and Clinical Advancement of Modern Antimalarials.
    Journal of medicinal chemistry, 2019, 12-12, Volume: 62, Issue:23

    Malaria is a devastating disease caused by

    Topics: Antimalarials; Drug Discovery; Humans; Malaria; Molecular Structure; Plasmodium

2019
Drugs in Development for Malaria.
    Drugs, 2018, Volume: 78, Issue:9

    The last two decades have seen a surge in antimalarial drug development with product development partnerships taking a leading role. Resistance of Plasmodium falciparum to the artemisinin derivatives, piperaquine and mefloquine in Southeast Asia means new antimalarials are needed with some urgency. There are at least 13 agents in clinical development. Most of these are blood schizonticides for the treatment of uncomplicated falciparum malaria, under evaluation either singly or as part of two-drug combinations. Leading candidates progressing through the pipeline are artefenomel-ferroquine and lumefantrine-KAF156, both in Phase 2b. Treatment of severe malaria continues to rely on two parenteral drugs with ancient forebears: artesunate and quinine, with sevuparin being evaluated as an adjuvant therapy. Tafenoquine is under review by stringent regulatory authorities for approval as a single-dose treatment for Plasmodium vivax relapse prevention. This represents an advance over standard 14-day primaquine regimens; however, the risk of acute haemolytic anaemia in patients with glucose-6-phosphate dehydrogenase deficiency remains. For disease prevention, several of the newer agents show potential but are unlikely to be recommended for use in the main target groups of pregnant women and young children for some years. Latest predictions are that the malaria burden will continue to be high in the coming decades. This fact, coupled with the repeated loss of antimalarials to resistance, indicates that new antimalarials will be needed for years to come. Failure of the artemisinin-based combinations in Southeast Asia has stimulated a reappraisal of current approaches to combination therapy for malaria with incorporation of three or more drugs in a single treatment under consideration.

    Topics: Aminoquinolines; Antimalarials; Artemisinins; Drug Discovery; Drug Resistance, Multiple; Ferrous Compounds; Humans; Imidazoles; Lumefantrine; Malaria; Metallocenes; Piperazines; Signal Transduction; Treatment Outcome

2018
The  early  preclinical and clinical development of ganaplacide (KAF156), a novel antimalarial compound.
    Expert opinion on investigational drugs, 2018, Volume: 27, Issue:10

    Ganaplacide (previously known as KAF156) is a novel antimalarial compound part of the imidazolopiperazine family.. At the time of writing, a total of eight studies addressing its preclinical and clinical development have been published on this compound, which is currently in phase 2 of clinical development, alongside lumefantrine in a novel soluble formulation as combination partner. This review provides an overview and interpretation of the published pre-clinical and clinical data of this possible next-generation antimalarial drug.. In the search for a 'magic bullet' in malaria therapy and prophylaxis facilitating single encounter radical cure and prophylaxis, ganaplacide demonstrates some promising properties toward this ultimate goal. The available data suggest that ganaplacide exerts multi-stage antimalarial activity, and that its pharmacokinetic profile potentially allows for a simplified dosing regimen compared to that of existing antimalarial drug combinations. The first in-patient results demonstrate promising single-dose antimalarial activity, and no serious in-human safety and tolerability concerns have been reported to date.

    Topics: Animals; Antimalarials; Drug Administration Schedule; Drug Design; Drug Therapy, Combination; Ethanolamines; Fluorenes; Humans; Imidazoles; Lumefantrine; Malaria; Piperazines

2018
Supporting malaria elimination with 21st century antimalarial agent drug discovery.
    Drug discovery today, 2015, Volume: 20, Issue:10

    The burden of malaria has been considerably reduced over recent years. However, to achieve disease elimination, drug discovery for the next generation needs to focus on blocking disease transmission and on targeting the liver-stage forms of the parasite. Properties of the 'ideal' new antimalarial drug and the key scientific and technological advances that have led to recent progress in antimalarial drug discovery are reviewed. Using these advances, Novartis has built a robust pipeline of next-generation antimalarials. The preclinical and clinical development of two candidate drugs: KAE609 and KAF156, provide a framework for the path to breakthrough treatments that could be taking us a step closer to the vision of malaria elimination.

    Topics: Animals; Antimalarials; Drug Design; Drug Discovery; Humans; Imidazoles; Indoles; Malaria; Piperazines; Spiro Compounds

2015

Trials

2 trial(s) available for kaf156 and Malaria

ArticleYear
Ganaplacide (KAF156) plus lumefantrine solid dispersion formulation combination for uncomplicated Plasmodium falciparum malaria: an open-label, multicentre, parallel-group, randomised, controlled, phase 2 trial.
    The Lancet. Infectious diseases, 2023, Volume: 23, Issue:9

    Emergence of drug resistance demands novel antimalarial drugs with new mechanisms of action. We aimed to identify effective and well tolerated doses of ganaplacide plus lumefantrine solid dispersion formulation (SDF) in patients with uncomplicated Plasmodium falciparum malaria.. This open-label, multicentre, parallel-group, randomised, controlled, phase 2 trial was conducted at 13 research clinics and general hospitals in ten African and Asian countries. Patients had microscopically-confirmed uncomplicated P falciparum malaria (>1000 and <150 000 parasites per μL). Part A identified the optimal dose regimens in adults and adolescents (aged ≥12 years) and in part B, the selected doses were assessed in children (≥2 years and <12 years). In part A, patients were randomly assigned to one of seven groups (once a day ganaplacide 400 mg plus lumefantrine-SDF 960 mg for 1, 2, or 3 days; ganaplacide 800 mg plus lumefantrine-SDF 960 mg as a single dose; once a day ganaplacide 200 mg plus lumefantrine-SDF 480 mg for 3 days; once a day ganaplacide 400 mg plus lumefantrine-SDF 480 mg for 3 days; or twice a day artemether plus lumefantrine for 3 days [control]), with stratification by country (2:2:2:2:2:2:1) using randomisation blocks of 13. In part B, patients were randomly assigned to one of four groups (once a day ganaplacide 400 mg plus lumefantrine-SDF 960 mg for 1, 2, or 3 days, or twice a day artemether plus lumefantrine for 3 days) with stratification by country and age (2 to <6 years and 6 to <12 years; 2:2:2:1) using randomisation blocks of seven. The primary efficacy endpoint was PCR-corrected adequate clinical and parasitological response at day 29, analysed in the per protocol set. The null hypothesis was that the response was 80% or lower, rejected when the lower limit of two-sided 95% CI was higher than 80%. This study is registered with EudraCT (2020-003284-25) and ClinicalTrials.gov (NCT03167242).. Between Aug 2, 2017, and May 17, 2021, 1220 patients were screened and of those, 12 were included in the run-in cohort, 337 in part A, and 175 in part B. In part A, 337 adult or adolescent patients were randomly assigned, 326 completed the study, and 305 were included in the per protocol set. The lower limit of the 95% CI for PCR-corrected adequate clinical and parasitological response on day 29 was more than 80% for all treatment regimens in part A (46 of 50 patients [92%, 95% CI 81-98] with 1 day, 47 of 48 [98%, 89-100] with 2 days, and 42 of 43 [98%, 88-100] with 3 days of ganaplacide 400 mg plus lumefantrine-SDF 960 mg; 45 of 48 [94%, 83-99] with ganaplacide 800 mg plus lumefantrine-SDF 960 mg for 1 day; 47 of 47 [100%, 93-100] with ganaplacide 200 mg plus lumefantrine-SDF 480 mg for 3 days; 44 of 44 [100%, 92-100] with ganaplacide 400 mg plus lumefantrine-SDF 480 mg for 3 days; and 25 of 25 [100%, 86-100] with artemether plus lumefantrine). In part B, 351 children were screened, 175 randomly assigned (ganaplacide 400 mg plus lumefantrine-SDF 960 mg once a day for 1, 2, or 3 days), and 171 completed the study. Only the 3-day regimen met the prespecified primary endpoint in paediatric patients (38 of 40 patients [95%, 95% CI 83-99] vs 21 of 22 [96%, 77-100] with artemether plus lumefantrine). The most common adverse events were headache (in seven [14%] of 51 to 15 [28%] of 54 in the ganaplacide plus lumefantrine-SDF groups and five [19%] of 27 in the artemether plus lumefantrine group) in part A, and malaria (in 12 [27%] of 45 to 23 [44%] of 52 in the ganaplacide plus lumefantrine-SDF groups and 12 [50%] of 24 in the artemether plus lumefantrine group) in part B. No patients died during the study.. Ganaplacide plus lumefantrine-SDF was effective and well tolerated in patients, especially adults and adolescents, with uncomplicated P falciparum malaria. Ganaplacide 400 mg plus lumefantrine-SDF 960 mg once daily for 3 days was identified as the optimal treatment regimen for adults, adolescents, and children. This combination is being evaluated further in a phase 2 trial (NCT04546633).. Novartis and Medicines for Malaria Venture.

    Topics: Adolescent; Adult; Antimalarials; Artemether; Artemisinins; Child; Drug Combinations; Ethanolamines; Fluorenes; Humans; Lumefantrine; Malaria; Malaria, Falciparum; Plasmodium falciparum; Treatment Outcome

2023
A first-in-human randomized, double-blind, placebo-controlled, single- and multiple-ascending oral dose study of novel Imidazolopiperazine KAF156 to assess its safety, tolerability, and pharmacokinetics in healthy adult volunteers.
    Antimicrobial agents and chemotherapy, 2014, Volume: 58, Issue:11

    KAF156 belongs to a new class of antimalarial, the imidazolopiperazines, and is currently in clinical development for the treatment of uncomplicated malaria. This first-in-human, single- and multiple-ascending-dose study in 70 healthy male volunteers determined the maximum oral dose of KAF156 tolerated by healthy adults and derived pharmacokinetic data (including preliminary food effect) to enable dose calculations for malaria patients. KAF156 was studied in single-dose cohorts (10 to 1,200 mg, including one 400-mg food effect cohort (4 to 10 subjects/cohort), and in multiple-dose cohorts (60 to 600 mg once daily for 3 days; 8 subjects/cohort). The follow-up period was 6 to 14 days after the last dose. KAF156 was tolerated, with self-limited mild to moderate gastrointestinal and neurological adverse events. In treated subjects after single doses, headache (n = 4; 11.1%), diarrhea (n = 3; 8.3%), dizziness (n = 3; 8.3%), and abdominal pain (n = 2; 5.6%) were the most common adverse events. Headache (n = 4; 16.7%), nausea (n = 3; 12.5%), upper respiratory tract infection (n = 3; 12.5%), and dizziness (n = 2; 8.3%) were the most common adverse events following multiple doses. KAF156 time to maximum concentration (Tmax) was between 1.0 and 6.0 h. Both the area under the concentration-time curve (AUC) and maximum concentration (Cmax) increased more than dose-proportionally in both single- and multiple-ascending-dose cohorts (terminal half-life, 42.5 to 70.7 h). There was no significant accumulation over 3-day repeated administration. The extent of absorption was not significantly affected by food at a single dose of 400 mg, while mean Cmax decreased from 778 ng/ml to 627 ng/ml and Tmax was delayed from a median of 3.0 h under fasting conditions to 6.0 h under fed conditions. Renal elimination is a minor route.

    Topics: Administration, Oral; Adolescent; Adult; Antimalarials; Dose-Response Relationship, Drug; Double-Blind Method; Drug Administration Schedule; Drug Resistance; Female; Healthy Volunteers; Humans; Imidazoles; Intestinal Absorption; Malaria; Male; Middle Aged; Piperazines; Placebos; Plasmodium falciparum; Plasmodium vivax; Young Adult

2014