k201-compound and Myocardial-Infarction

k201-compound has been researched along with Myocardial-Infarction* in 2 studies

Other Studies

2 other study(ies) available for k201-compound and Myocardial-Infarction

ArticleYear
Function of Ca(2+) release channels in Purkinje cells that survive in the infarcted canine heart: a mechanism for triggered Purkinje ectopy.
    Circulation. Arrhythmia and electrophysiology, 2008, Volume: 1, Issue:5

    Triggered Purkinje ectopy can lead to the initiation of serious ventricular arrhythmias in post-myocardial infarction patients. In the canine model, Purkinje cells from the subendocardial border of the healing infarcted heart can initiate ventricular arrhythmias. Intracellular Ca(2+) abnormalities underlie these arrhythmias, yet the subcellular reasons for these abnormalities remain unknown.. Using 2D confocal microscopy, we directly quantify and compare typical spontaneous Ca(2+) events in specific subcellular regions of normal Purkinje cells with those Purkinje cells from the subendocardium of the 48-hour infarcted canine heart (IZPCs). The Ca(2+) event rate was higher in the subsarcolemmal region of IZPCs when compared with normal Purkinje cells; IZPC amplitudes were higher, yet the spatial extents of these events were similar. The amplitude of caffeine-releasable Ca(2+) in either the subsarcolemmal or core regions of IZPCs did not differ from normal Purkinje cells, suggesting that Ca(2+) overload was not related to the frequency change. In permeabilized Purkinje cells from both groups, the event rate was related to free [Ca(2+)] in both subsarcolemmal and core, but in IZPCs, this event rate was significantly increased at each free Ca(2+), suggesting an enhanced sensitivity to Ca(2+) release. Furthermore, decays of wide long lasting Ca(2+) release events in IZPC's core were significantly accelerated compared with those in normal Purkinje cells. JTV519 (K201) suppressed IZPC cell wide Ca(2+) waves as well as normalized the enhanced event rate and its response to free Ca(2+).. Increased spontaneous Ca(2+) release events in IZPCs are due to uniform regionally increased Ca(2+) release channel sensitivity to Ca(2+) without a change in sarcoplasmic reticulum content. In addition, Ca(2+) reuptake in IZPCs is accelerated. These properties would lower the threshold of Ca(2+) release channels, setting the stage for the highly frequent arrhythmogenic cell wide Ca(2+) waves observed in IZPCs.

    Topics: Animals; Arrhythmias, Cardiac; Caffeine; Calcium Channels; Calcium Signaling; Cell Survival; Disease Models, Animal; Dogs; Dose-Response Relationship, Drug; Kinetics; Microscopy, Confocal; Myocardial Infarction; Permeability; Purkinje Cells; Saponins; Sarcoplasmic Reticulum; Tetracaine; Thiazepines

2008
2APB- and JTV519(K201)-sensitive micro Ca2+ waves in arrhythmogenic Purkinje cells that survive in infarcted canine heart.
    Heart rhythm, 2004, Volume: 1, Issue:2

    Studies from several laboratories have implicated intracellular Ca(2+) dynamics in the modulation of electrical activity. We have reported that abnormal Ca(2+) wave activity is the underlying cause of afterdepolarization-induced electrical activity in subendocardial Purkinje cells that survive in the 48-hour infarcted canine heart. These cells form the focus of arrhythmias at this time postcoronary artery occlusion.. We studied the effects of agonists and antagonists on the abnormal Ca(2+) release activity of Purkinje cell aggregates dispersed from the subendocardium 48 hours postcoronary artery occlusion (IZPCs). Studies were completed using epifluorescent microscopy of Fluo-3 loaded Purkinje cells.. Similar to our previous report, highly frequent traveling micro Ca(2+) transients (muCaiTs) and cell-wide Ca(2+) waves were seen in IZPCs in the absence of any drug. Isoproterenol (ISO) increased muCaiTs and cell-wide Ca(2+) waves in Purkinje cells dispersed from the normal heart (NZPCs). In IZPCs, ISO increased cell-wide wave frequency but had no effect on the already highly frequent micro Ca(2+) wave transient activity, suggesting that ISO lowers the threshold of cell-wide generators responding to micro Ca(2+) transients. Drugs that block inward sodium or calcium currents (verapamil, tetrodotoxin) had no effect on Ca(2+) activity in Purkinje cells. Antagonists of intracellular Ca(2+) release channels [ryanodine, JTV519(K201)] greatly suppressed spontaneous Ca(2+) release events in IZPCs. 2APB, an agent that blocks IP(3) receptors, greatly reduced the frequency of Ca(2+) events in IZPCs.. In arrhythmogenic Purkinje cells that survive in the infarcted heart, agents that block or inhibit intracellular Ca(2+) release channel activity reduced Ca(2+) waves and could be antiarrhythmic.

    Topics: Adrenergic beta-Agonists; Aniline Compounds; Animals; Boron Compounds; Calcium; Calcium Channel Blockers; Calcium Channels; Coloring Agents; Dogs; Isoproterenol; Male; Microscopy, Fluorescence; Myocardial Infarction; Purkinje Cells; Thiazepines; Verapamil; Xanthenes

2004