jzl-184 and Parkinsonian-Disorders

jzl-184 has been researched along with Parkinsonian-Disorders* in 2 studies

Other Studies

2 other study(ies) available for jzl-184 and Parkinsonian-Disorders

ArticleYear
Monoacylglycerol lipase inhibitor JZL184 is neuroprotective and alters glial cell phenotype in the chronic MPTP mouse model.
    Neurobiology of aging, 2014, Volume: 35, Issue:11

    Changes in cannabinoid receptor expression and concentration of endocannabinoids have been described in Parkinson's disease; however, it remains unclear whether they contribute to, or result from, the disease process. To evaluate whether targeting the endocannabinoid system could provide potential benefits in the treatment of the disease, the effect of a monoacylglycerol lipase inhibitor that prevents degradation of 2-arachidonyl-glycerol was tested in mice treated chronically with probenecid and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTPp). Chronic administration of the compound, JZL184 (8 mg/kg), prevented MPTPp-induced motor impairment and preserved the nigrostriatal pathway. Furthermore, none of the hypokinetic effects associated with cannabinoid receptor agonism were observed. In the striatum and substantia nigra pars compacta, MPTPp animals treated with JZL184 exhibited astroglial and microglial phenotypic changes that were accompanied by increases in TGFβ messenger RNA expression and in glial cell-derived neurotrophic factor messenger RNA and protein levels. JZL184 induced an increase in β-catenin translocation to the nucleus, implicating the Wnt/catenin pathway. Together, these results demonstrate a potent neuroprotective effect of JZL184 on the nigrostriatal pathway of parkinsonian animals, likely involving restorative astroglia and microglia activation and the release of neuroprotective and antiinflammatory molecules.

    Topics: Animals; Anti-Inflammatory Agents; Arachidonic Acids; Benzodioxoles; Corpus Striatum; Disease Models, Animal; Endocannabinoids; Glial Fibrillary Acidic Protein; Glycerides; Male; Mice, Inbred C57BL; Monoacylglycerol Lipases; Nerve Tissue Proteins; Neural Pathways; Neuroglia; Neuroprotective Agents; Parkinsonian Disorders; Piperidines; Probenecid; Substantia Nigra

2014
Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation.
    Science (New York, N.Y.), 2011, Nov-11, Volume: 334, Issue:6057

    Phospholipase A(2)(PLA(2)) enzymes are considered the primary source of arachidonic acid for cyclooxygenase (COX)-mediated biosynthesis of prostaglandins. Here, we show that a distinct pathway exists in brain, where monoacylglycerol lipase (MAGL) hydrolyzes the endocannabinoid 2-arachidonoylglycerol to generate a major arachidonate precursor pool for neuroinflammatory prostaglandins. MAGL-disrupted animals show neuroprotection in a parkinsonian mouse model. These animals are spared the hemorrhaging caused by COX inhibitors in the gut, where prostaglandins are instead regulated by cytosolic PLA(2). These findings identify MAGL as a distinct metabolic node that couples endocannabinoid to prostaglandin signaling networks in the nervous system and suggest that inhibition of this enzyme may be a new and potentially safer way to suppress the proinflammatory cascades that underlie neurodegenerative disorders.

    Topics: Animals; Arachidonic Acid; Arachidonic Acids; Benzodioxoles; Brain; Cannabinoid Receptor Modulators; Cyclooxygenase 1; Cytokines; Eicosanoids; Endocannabinoids; Enzyme Inhibitors; Glycerides; Hydrolysis; Inflammation; Inflammation Mediators; Lipopolysaccharides; Liver; Lung; Metabolomics; Mice; Mice, Inbred C57BL; Monoacylglycerol Lipases; Neuroprotective Agents; Parkinsonian Disorders; Phospholipases A2; Piperidines; Prostaglandins; Signal Transduction

2011