jy-1-106 and Neoplasms

jy-1-106 has been researched along with Neoplasms* in 3 studies

Reviews

3 review(s) available for jy-1-106 and Neoplasms

ArticleYear
Development of Mcl-1 inhibitors for cancer therapy.
    European journal of medicinal chemistry, 2021, Jan-15, Volume: 210

    The myeloid leukemia cell differentiation protein (Mcl-1) is an anti-apoptotic protein of the B-cell lymphoma 2 (Bcl-2) family, which regulates cellular apoptosis. Mcl-1 expression plays a key role in survival of cancer cells and therefore serves as a promising target in cancer therapy. Besides, its importance as a cancer target, various peptides and small-molecule inhibitors have been successfully designed and synthesized, yet no Mcl-1 inhibitor is approved for clinical use. However, recent development on the understanding of Mcl-1's role in key cellular processes in cancer and an upsurge of reports highlighting its association in various anticancer drug resistance supports the view that Mcl-1 is a key target in various cancers, especially hematological cancers. This review compiles structures of a variety of inhibitors of Mcl-1 reported to date. These include inhibitors based on a diverse range of heterocycles (e.g. indole, imidazole, thiophene, nicotinic acid, piperazine, triazine, thiazole, isoindoline), oligomers (terphenyl, quaterpyridine), polyphenol, phenalene, anthranilic acid, anthraquinone, macrocycles, natural products, and metal-based complexes. In addition, an effort has been made to summarize the structure activity relationships, based on a variety of assays, of some important classes of Mcl-1 inhibitors, giving affinities and selectivities for Mcl-1 compared to other Bcl-2 family members. A focus has been placed on categorizing the inhibitors based on their core frameworks (scaffolds) to appeal to the chemical biologist or medicinal chemist.

    Topics: Antineoplastic Agents; Cell Proliferation; Drug Development; Heterocyclic Compounds; Humans; Molecular Structure; Myeloid Cell Leukemia Sequence 1 Protein; Neoplasms

2021
The chemical biology of apoptosis: Revisited after 17 years.
    European journal of medicinal chemistry, 2019, Sep-01, Volume: 177

    A balance of Bcl-2 family proteins dictates cell survival or death, as the interactions between these proteins regulate mitochondrial apoptotic signaling pathways. However, cancer cells frequently show upregulation of pro-survival Bcl-2 proteins and sequester activated pro-apoptotic BH3-only proteins driven by diverse cytotoxic stresses, resulting in tumor progression and chemoresistance. Synthetic molecules from either structure-based design or screening procedures to engage and inactivate pro-survival Bcl-2 proteins and restore apoptotic process represent a chemical biological means of selectively killing malignant cells. 17 years ago, one of us reviewed on the discovery of novel Bcl-2 targeted agents [1]. Here we revisit this area and examine the progress and current status of small molecule Bcl-2 inhibitor development, demonstrating the Bcl-2 family as a valid target for cancer therapy and providing successful examples for the discovery of inhibitors that target protein-protein interactions.

    Topics: Animals; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Drug Design; Humans; Neoplasms; Proto-Oncogene Proteins c-bcl-2

2019
Expanding the Cancer Arsenal with Targeted Therapies: Disarmament of the Antiapoptotic Bcl-2 Proteins by Small Molecules.
    Journal of medicinal chemistry, 2017, 02-09, Volume: 60, Issue:3

    A hallmark of cancer is the evasion of apoptosis, which is often associated with the upregulation of the antiapoptotic members of the Bcl-2 family of proteins. The prosurvival function of the antiapoptotic Bcl-2 proteins is manifested by capturing and neutralizing the proapoptotic Bcl-2 proteins via their BH3 death domains. Accordingly, strategies to antagonize the antiapoptotic Bcl-2 proteins have largely focused on the development of low-molecular-weight, synthetic BH3 mimetics ("magic bullets") to disrupt the protein-protein interactions between anti- and proapoptotic Bcl-2 proteins. In this way, apoptosis has been reactivated in malignant cells. Moreover, several such Bcl-2 family inhibitors are presently being evaluated for a range of cancers in clinical trials and show great promise as new additions to the cancer armamentarium. Indeed, the selective Bcl-2 inhibitor venetoclax (Venclexta) recently received FDA approval for the treatment of a specific subset of patients with chronic lymphocytic leukemia. This review focuses on the major developments in the field of Bcl-2 inhibitors over the past decade, with particular emphasis on binding modes and, thus, the origins of selectivity for specific Bcl-2 family members.

    Topics: Apoptosis; Humans; Neoplasms; Proto-Oncogene Proteins c-bcl-2; Small Molecule Libraries

2017