jwh-133 has been researched along with Peripheral-Nervous-System-Diseases* in 2 studies
2 other study(ies) available for jwh-133 and Peripheral-Nervous-System-Diseases
Article | Year |
---|---|
Involvement of central cannabinoid CB2 receptor in reducing mechanical allodynia in a mouse model of neuropathic pain.
We sought to examine the involvement of central cannabinoid CB2 receptor activation in modulating mechanical allodynia in a mouse model of neuropathic pain. JWH133 was demonstrated to be a selective cannabinoid CB2 receptor agonist in mice, reducing forskolin-stimulated cAMP production in CHO cells expressing mouse cannabinoid CB2 and cannabinoid CB1 receptors with EC50 values of 63 nM and 2500 nM, respectively. Intrathecal administration of JWH133 (50 and 100 nmol/mouse) significantly reversed partial sciatic nerve ligation-induced mechanical allodynia in mice at 0.5 h after administration. In contrast, systemic (intraperitoneal) or local (injected to the dorsal surface of the hindpaw) administration of JWH133 (100 nmol/mouse) was ineffective. Furthermore, the analgesic effects of intrathecal JWH133 (100 nmol/mouse) were absent in cannabinoid CB2 receptor knockout mice. These results suggest that the activation of central, but not peripheral, cannabinoid CB2 receptors play an important role in reducing mechanical allodynia in a mouse model of neuropathic pain. Topics: Animals; Cannabinoids; CHO Cells; Cricetinae; Cricetulus; Cyclic AMP; Female; Genetic Vectors; Indicators and Reagents; Injections, Intraperitoneal; Injections, Spinal; Ligation; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Pain; Peripheral Nervous System Diseases; Physical Stimulation; Receptor, Cannabinoid, CB2; Sciatic Nerve; Sciatic Neuropathy; Transfection | 2008 |
Cannabinoid CB2 receptor activation inhibits mechanically evoked responses of wide dynamic range dorsal horn neurons in naïve rats and in rat models of inflammatory and neuropathic pain.
Peripheral cannabinoid 2 receptors (CB2 receptors) modulate immune responses and attenuate nociceptive behaviour in models of acute and persistent pain. The aim of the present study was to investigate whether peripheral CB2 receptors modulate spinal processing of innocuous and noxious responses and to determine whether there are altered roles of CB2 receptors in models of persistent pain. Effects of local administration of the CB2 receptor agonist JWH-133 (5 and 15 microg/50 microL) on mechanically evoked responses of spinal wide dynamic range (WDR) neurons in noninflamed rats, rats with carrageenan-induced hindpaw inflammation, sham operated rats and spinal nerve-ligated (SNL) rats were determined in anaesthetized rats in vivo. Mechanical stimulation (von Frey filaments, 6-80 g) of the peripheral receptive field evoked firing of WDR neurons. Mechanically evoked responses of WDR neurons were similar in noninflamed, carrageenan-inflamed, sham-operated and SNL rats. Intraplantar injection of JWH-133 (15 microg), but not vehicle, significantly (P < 0.05) inhibited innocuous and noxious mechanically evoked responses of WDR neurons in all four groups of rats. In many cases the selective CB2 receptor antagonist, SR144528 (10 microg/50 microL), attenuated the inhibitory effects of JWH-133 (15 microg) on mechanically evoked WDR neuronal responses. The CB1 receptor antagonist, SR141716A, did not attenuate the inhibitory effects of JWH-133 on these responses. Intraplantar preadministration of JWH-133 also inhibited (P < 0.05) carrageenan-induced expansion of peripheral receptive fields of WDR dorsal horn neurons. This study demonstrates that activation of peripheral CB2 receptors attenuates both innocuous- and noxious-evoked responses of WDR neurons in models of acute, inflammatory and neuropathic pain. Topics: Action Potentials; Animals; Camphanes; Cannabinoids; Carrageenan; Disease Models, Animal; Inflammation; Ligation; Male; Neural Inhibition; Neuralgia; Nociceptors; Peripheral Nervous System Diseases; Physical Stimulation; Piperidines; Posterior Horn Cells; Pyrazoles; Rats; Rats, Sprague-Dawley; Reaction Time; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant; Sensory Receptor Cells; Spinal Nerves | 2004 |