jwh-133 and Colitis

jwh-133 has been researched along with Colitis* in 3 studies

Other Studies

3 other study(ies) available for jwh-133 and Colitis

ArticleYear
Cannabinoid receptor-2 (CB2) agonist ameliorates colitis in IL-10(-/-) mice by attenuating the activation of T cells and promoting their apoptosis.
    Toxicology and applied pharmacology, 2012, Jan-15, Volume: 258, Issue:2

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammation caused by hyperactivated effector immune cells that produce pro-inflammatory cytokines. Recent studies have shown that the cannabinoid system may play a critical role in mediating protection against intestinal inflammation. However, the effect of cannabinoid receptor induction after chronic colitis progression has not been investigated. Here, we investigate the effect of cannabinoid receptor-2 (CB2) agonist, JWH-133, after chronic colitis in IL-10(-/-) mice. JWH-133 effectively attenuated the overall clinical score, and reversed colitis-associated pathogenesis and decrease in body weight in IL-10(-/-) mice. After JWH-133 treatment, the percentage of CD4(+) T cells, neutrophils, mast cells, natural killer (NK1.1) cells, and activated T cells declined in the intestinal lamina propria (LP) and mesenteric lymph nodes (MLN) of mice with chronic colitis. JWH-133 was also effective in ameliorating dextran sodium sulfate (DSS)-induced colitis. In this model, JWH-133 reduced the number and percentage of macrophages and IFN-γ expressing cells that were induced during colitis progression. Treatment with aminoalkylindole 6-iodo-pravadoline (AM630), a CB2 receptor antagonist, reversed the colitis protection provided by JWH-133 treatment. Also, activated T cells were found to undergo apoptosis following JWH-133 treatment both in-vivo and in-vitro. These findings suggest that JWH-133 mediates its effect through CB2 receptors, and ameliorates chronic colitis by inducing apoptosis in activated T cells, reducing the numbers of activated T cells, and suppressing induction of mast cells, NK cells, and neutrophils at sites of inflammation in the LP. These results support the idea that the CB2 receptor agonists may serve as a therapeutic modality against IBD.

    Topics: Animals; Apoptosis; Body Weight; Cannabinoids; Chronic Disease; Colitis; Dextran Sulfate; Disease Models, Animal; Disease Progression; Female; Interleukin-10; Killer Cells, Natural; Mast Cells; Mice; Mice, Inbred C57BL; Mice, Knockout; Neutrophils; Receptor, Cannabinoid, CB2; T-Lymphocytes

2012
Activation of the cannabinoid 2 receptor (CB2) protects against experimental colitis.
    Inflammatory bowel diseases, 2009, Volume: 15, Issue:11

    Activation of cannabinoid (CB)(1) receptors results in attenuation of experimental colitis. Our aim was to examine the role of CB(2) receptors in experimental colitis using agonists (JWH133, AM1241) and an antagonist (AM630) in trinitrobenzene sulfonic acid (TNBS)-induced colitis in wildtype and CB(2) receptor-deficient (CB(2) (-/-)) mice.. Mice were treated with TNBS to induce colitis and then given intraperitoneal injections of the CB(2) receptor agonists JWH133, AM1241, or the CB(2) receptor antagonist AM630. Additionally, CB(2) (-/-) mice were treated with TNBS and injected with JWH133 or AM1241. Animals were examined 3 days after the induction of colitis. The colons were removed for macroscopic and microscopic evaluation, as well as the determination of myeloperoxidase activity. Quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) for CB(2) receptor was also performed in animals with TNBS and dextran sodium sulfate colitis.. Intracolonic installation of TNBS caused severe colitis. CB(2) mRNA expression was significantly increased during the course of experimental colitis. Three-day treatment with JWH133 or AM1241 significantly reduced colitis; AM630 exacerbated colitis. The effect of JWH133 was abolished when animals were pretreated with AM630. Neither JWH133 nor AM1241 had effects in CB(2) (-/-) mice.. We show that activation of the CB(2) receptor protects against experimental colitis in mice. Increased expression of CB(2) receptor mRNA and aggravation of colitis by AM630 suggests a role for this receptor in normally limiting the development of colitis. These results support the idea that the CB(2) receptor may be a possible novel therapeutic target in inflammatory bowel disease.

    Topics: Animals; Cannabinoids; Colitis; Disease Models, Animal; Female; Gene Expression; Indoles; Inflammatory Bowel Diseases; Male; Mice; Mice, Inbred C57BL; Mice, Mutant Strains; Receptor, Cannabinoid, CB2

2009
Agonists of cannabinoid receptor 1 and 2 inhibit experimental colitis induced by oil of mustard and by dextran sulfate sodium.
    American journal of physiology. Gastrointestinal and liver physiology, 2006, Volume: 291, Issue:2

    Oil of mustard (OM) is a potent neuronal activator that is known to elicit visceral hyperalgesia when given intracolonically, but the full extent to which OM is also proinflammatory in the gastrointestinal tract is not known. We have previously shown that male CD-1 mice given a single administration of 0.5% OM develop a severe colitis that is maximum at day 3 and that gradually lessens until essentially absent by day 14. OM-induced neuronal stimulation is reported to be reduced by cannabinoid agonists, and cannabinoid receptor 1 (CB1R)-/- mice have exacerbated experimental colitis. Therefore, we examined the role of cannabinoids in this OM-induced 3-day model of colitis in CD-1 mice and in a 7-day dextran sulfate sodium (DSS) colitis model in BALB/c mice. In OM colitis, the CB1R-selective agonist ACEA and the CB2R-selective agonist JWH-133 reduced (P < 0.05) colon weight gain (means +/- SE; 82 +/- 13% and 47 +/- 15% inhibition, respectively), colon shrinkage (98 +/- 24% and 42 +/- 12%, respectively), colon inflammatory damage score (49 +/- 11% and 40 +/- 12%, respectively), and diarrhea (58 +/- 12% and 43 +/- 11%, respectively). Histological damage was similarly reduced by these treatments. Likewise, CBR agonists attenuated DSS colitis, albeit at higher doses; ACEA at 10 mg/kg, twice daily, inhibited (P < 0.05) macroscopic and microscopic scores (46 +/- 9% and 63 +/- 7%, respectively); whereas 20 mg/kg, twice daily, of JWH-133 was required to diminish (P < 0.05) macroscopic and microscopic scores (29 +/- 7% and 43 +/- 5%, respectively). CB1R and CB2R immunostaining of colon sections revealed that CB1R in enteric neurons was more intense in colitic vs. control mice; however, CB1R was also increased in the endothelial layer in OM colitis only. CB2R immunostaining was more marked in infiltrated immune cells in OM colitis. These findings validate the OM colitis model with respect to the DSS model and provide strong support to the emerging idea that cannabinoid receptor activation mediates protective mechanisms in experimental colitis. The demonstration of CB1R agonist effects in colitis support the neurogenic nature of the OM-induced colitis model and reinforce the importance of neuronal activation in intestinal inflammation.

    Topics: Animals; Arachidonic Acids; Cannabinoids; Colitis; Dextran Sulfate; Disease Models, Animal; Male; Mice; Mice, Inbred BALB C; Mustard Plant; Plant Oils; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Treatment Outcome

2006