jwh-133 has been researched along with Atherosclerosis* in 2 studies
2 other study(ies) available for jwh-133 and Atherosclerosis
Article | Year |
---|---|
Selective activation of CB2 receptor improves efferocytosis in cultured macrophages.
Recent evidence indicates that the defective ability to clear apoptotic cells by macrophages (efferocytosis) and the resultant apoptotic cells accumulation in atherosclerotic plaques play an important role during the progression of unstable plaques. The cannabinoid type 2 receptor (CB2), has recently been emerging as a new target to reduce vulnerability and promote stability of plaques, however, the underlying mechanisms have not been studied in detail. In the present study, we investigated whether selective activation of CB2 improves efferocytosis of macrophages.. RAW264.7 macrophage line and primary-isolated peritoneal lavage macrophages from C57bl/6J mice were cultured. The efferocytosis of macrophages was analyzed by using flow cytometry or confocal microscopy; and the possible mechanisms involved in regulation of efferocytosis were also explored by using molecular biology methods.. We found that JWH-133 and HU-308, selective agonists of CB2 receptor, concentration-dependently increased the phagocytosis of apoptotic cells in normal-cultured and oxidative low density lipoprotein (OxLDL) -loaded RAW264.7 and primary macrophages. JWH-133 and HU-308 also up-regulated expressions of tyrosine kinase family phagocytic receptors MerTK, Tyro3 and Axl, reduced levels of TNF-alpha and reactive oxygen species (ROS) induced by OxLDL, and inhibited activation of RhoA GTPase.. The selective activation of CB2 improves efferosytosis of normal-cultured and OxLDL-loaded macrophages, which might provide a novel mechanism on how CB2 activation reduces vulnerability and promotes stability of atherosclerotic plaques. Topics: Animals; Atherosclerosis; Cannabinoids; Cell Line; Cells, Cultured; Culture Media; Macrophages; Mice; Mice, Inbred C57BL; Phagocytosis; Receptor, Cannabinoid, CB2; rhoA GTP-Binding Protein | 2016 |
Cannabinoid receptor 2 signaling does not modulate atherogenesis in mice.
Strong evidence supports a protective role of the cannabinoid receptor 2 (CB(2)) in inflammation and atherosclerosis. However, direct proof of its involvement in lesion formation is lacking. Therefore, the present study aimed to characterize the role of the CB(2) receptor in Murine atherogenesis.. Low density lipoprotein receptor-deficient (LDLR(-/-)) mice subjected to intraperitoneal injections of the selective CB(2) receptor agonist JWH-133 or vehicle three times per week consumed high cholesterol diet (HCD) for 16 weeks. Surprisingly, intimal lesion size did not differ between both groups in sections of the aortic roots and arches, suggesting that CB(2) activation does not modulate atherogenesis in vivo. Plaque content of lipids, macrophages, smooth muscle cells, T cells, and collagen were also similar between both groups. Moreover, CB(2) (-/-)/LDLR(-/-) mice developed lesions of similar size containing more macrophages and lipids but similar amounts of smooth muscle cells and collagen fibers compared with CB(2) (+/+)/LDLR(-/-) controls. While JWH-133 treatment reduced intraperitoneal macrophage accumulation in thioglycollate-elicited peritonitis, neither genetic deficiency nor pharmacologic activation of the CB(2) receptor altered inflammatory cytokine expression in vivo or inflammatory cell adhesion in the flow chamber in vitro.. Our study demonstrates that both activation and deletion of the CB(2) receptor do not relevantly modulate atherogenesis in mice. Our data do not challenge the multiple reports involving CB(2) in other inflammatory processes. However, in the context of atherosclerosis, CB(2) does not appear to be a suitable therapeutic target for reduction of the atherosclerotic plaque. Topics: Animals; Atherosclerosis; Cannabinoids; Cell Survival; Cytokines; Disease Models, Animal; Endothelial Cells; Feeding Behavior; Inflammation; Intercellular Adhesion Molecule-1; Mass Spectrometry; Mice; Mice, Inbred C57BL; Monocytes; Receptor, Cannabinoid, CB2; Signal Transduction | 2011 |