jwh-073 and Hypothermia

jwh-073 has been researched along with Hypothermia* in 4 studies

Reviews

1 review(s) available for jwh-073 and Hypothermia

ArticleYear
Tripping with Synthetic Cannabinoids ("Spice"): Anecdotal and Experimental Observations in Animals and Man.
    Current topics in behavioral neurosciences, 2017, Volume: 32

    Topics: Animals; Behavior, Animal; Cannabinoids; Drug Tolerance; Humans; Hypothermia; Indoles; Mental Disorders; Naphthalenes; Seizures; Substance Withdrawal Syndrome; Substance-Related Disorders

2017

Other Studies

3 other study(ies) available for jwh-073 and Hypothermia

ArticleYear
Effect of JWH-250, JWH-073 and their interaction on "tetrad", sensorimotor, neurological and neurochemical responses in mice.
    Progress in neuro-psychopharmacology & biological psychiatry, 2016, Jun-03, Volume: 67

    JWH-250 and JWH-073 are two synthetic cannabinoid agonists with nanomolar affinity at CB1 and CB2 receptors. They are illegally marketed within "herbal blend" for theirs psychoactive effects greater than those produced by Cannabis. Recently, we analyzed an "herbal" preparation containing a mixture of both JWH-250 and JWH-073. The present study was aimed at investigating the in vitro and in vivo pharmacological activity of JWH-250 and JWH-073 in male CD-1 mice. In vitro competition binding experiments performed on mouse and human CB1 and CB2 receptors revealed a nanomolar affinity and potency of the JWH-250 and JWH-073. In vivo studies showed that JWH-250 and JWH-073, administered separately, induced a marked hypothermia, increased pain threshold to both noxious mechanical and thermal stimuli, caused catalepsy, reduced motor activity, impaired sensorimotor responses (visual, acoustic and tactile), caused seizures, myoclonia, hyperreflexia and promote aggressiveness in mice. Moreover, microdialysis study in freely moving mice showed that systemic administration of JWH-250 and JWH-073 stimulated dopamine release in the nucleus accumbens in a dose-dependent manner. Behavioral, neurological and neurochemical effects were fully prevented by the selective CB1 receptor antagonist/inverse agonist AM 251. Co-administration of ineffective doses of JWH-250 and JWH-073 impaired visual sensorimotor responses, improved mechanical pain threshold and stimulated mesolimbic DA transmission in mice, living unchanged all other behavioral and physiological parameters. For the first time the present study demonstrates the overall pharmacological effects induced by the administration of JWH-250 and JWH-073 in mice and it reveals their potentially synergistic action suggesting that co-administration of different synthetic cannabinoids may potentiate the detrimental effects of individual compounds increasing their dangerousness and abuse potential.

    Topics: Animals; Anisoles; Brain; Cells, Cultured; Cyclohexanols; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Synergism; Feedback, Sensory; Gait Disorders, Neurologic; Humans; Hypothermia; Indoles; Male; Mice; Mice, Inbred ICR; Naphthalenes; Nervous System Diseases; Pain Threshold; Reflex, Acoustic; Spleen; Vision, Ocular

2016
Repeated administration of phytocannabinoid Δ(9)-THC or synthetic cannabinoids JWH-018 and JWH-073 induces tolerance to hypothermia but not locomotor suppression in mice, and reduces CB1 receptor expression and function in a brain region-specific manner.
    Pharmacological research, 2015, Volume: 102

    These studies probed the relationship between intrinsic efficacy and tolerance/cross-tolerance between ∆(9)-THC and synthetic cannabinoid drugs of abuse (SCBs) by examining in vivo effects and cellular changes concomitant with their repeated administration in mice. Dose-effect relationships for hypothermic effects were determined in order to confirm that SCBs JWH-018 and JWH-073 are higher efficacy agonists than ∆(9)-THC in mice. Separate groups of mice were treated with saline, sub-maximal hypothermic doses of JWH-018 or JWH-073 (3.0mg/kg or 10.0mg/kg, respectively) or a maximally hypothermic dose of 30.0mg/kg ∆(9)-THC once per day for 5 consecutive days while core temperature and locomotor activity were monitored via biotelemetry. Repeated administration of all drugs resulted in tolerance to hypothermic effects, but not locomotor effects, and this tolerance was still evident 14 days after the last drug administration. Further studies treated mice with 30.0mg/kg ∆(9)-THC once per day for 4 days, then tested with SCBs on day 5. Mice with a ∆(9)-THC history were cross-tolerant to both SCBs, and this cross-tolerance also persisted 14 days after testing. Select brain regions from chronically treated mice were examined for changes in CB1 receptor expression and function. Expression and function of hypothalamic CB1Rs were reduced in mice receiving chronic drugs, but cortical CB1R expression and function were not altered. Collectively, these data demonstrate that repeated ∆(9)-THC, JWH-018 and JWH-073 can induce long-lasting tolerance to some in vivo effects, which is likely mediated by region-specific downregulation and desensitization of CB1Rs.

    Topics: Animals; Body Temperature; Brain; Dronabinol; Drug Tolerance; Hypothermia; Indoles; Male; Mice; Motor Activity; Naphthalenes; Receptor, Cannabinoid, CB1

2015
Differential drug-drug interactions of the synthetic Cannabinoids JWH-018 and JWH-073: implications for drug abuse liability and pain therapy.
    The Journal of pharmacology and experimental therapeutics, 2013, Volume: 346, Issue:3

    Marijuana substitutes often contain blends of multiple psychoactive synthetic cannabinoids (SCBs), including the prevalent SCBs (1-pentyl-1H-indole-3-yl)-1-naphthalenyl-methanone (JWH-018) and (1-butyl-1H-indole-3-yl)-1-naphthalenyl-methanone (JWH-073). Because SCBs are frequently used in combinations, we hypothesized that coadministering multiple SCBs induces synergistic drug-drug interactions. Drug-drug interactions between JWH-018 and JWH-073 were investigated in vivo for Δ(9)-tetrahydrocannabinol (Δ(9)-THC)-like discriminative stimulus effects, analgesia, task disruption, and hypothermia. Combinations (JWH-018:JWH-073) of these drugs were administered to mice in assays of Δ(9)-THC discrimination, tail-immersion, and food-maintained responding, and rectal temperatures were measured. Synergism occurred in the Δ(9)-THC discrimination assay for two constant dose ratio combinations (1:3 and 1:1). A 1:1 and 2:3 dose ratio induced additivity and synergy, respectively, in the tail-immersion assay. Both 1:1 and 2:3 dose ratios were additive for hypothermia, whereas a 1:3 dose ratio induced subadditive suppression of food-maintained responding. In vitro drug-drug interactions were assessed using competition receptor-binding assays employing mouse brain homogenates and cannabinoid 1 receptor (CB1R)-mediated inhibition of adenylyl cyclase activity in Neuro2A wild-type cells. Interestingly, synergy occurred in the competition receptor-binding assay for two dose ratios (1:5 and 1:10), but not in the adenylyl cyclase activity assay (1:5). Altogether, these data indicate that drug-drug interactions between JWH-018 and JWH-073 are effect- and ratio-dependent and may increase the relative potency of marijuana substitutes for subjective Δ(9)-THC-like effects. Combinations may improve the therapeutic profile of cannabinoids, considering that analgesia but not hypothermia or task disruption was potentiated. Importantly, synergy in the competition receptor-binding assay suggests multiple CB1R-SCB binding sites.

    Topics: Adenylyl Cyclase Inhibitors; Animals; Binding, Competitive; Body Temperature; Cells, Cultured; Conditioning, Operant; Discrimination, Psychological; Dose-Response Relationship, Drug; Drug Interactions; Drug Synergism; Female; Generalization, Psychological; Hypothermia; Illicit Drugs; In Vitro Techniques; Indoles; Male; Membranes; Mice; Naphthalenes; Pain; Pain Measurement; Psychomotor Performance; Receptor, Cannabinoid, CB1; Substance-Related Disorders

2013