jtt-130 has been researched along with Dyslipidemias* in 2 studies
1 review(s) available for jtt-130 and Dyslipidemias
Article | Year |
---|---|
Mitochondrial triglyceride transfer protein inhibition: new achievements in the treatment of dyslipidemias.
Current lipid-lowering drugs are often unable to achieve low density lipoprotein cholesterol (LDL-C) goals. Moreover, despite LDL-C lowering mostly by statins, a considerable residual vascular risk remains. This is partly associated with atherogenic dyslipidemia where apolipoprotein (apo) B-containing lipoproteins predominate. Mitochondrial Triglyceride (TG) transfer protein (MTP) is a key enzyme for apoB-containing lipoprotein assembly and secretion. This is mostly attributed to its capacity to transfer lipid components (TGs, cholesterol esters and phospholipids) to the endoplasmic reticulum lumen, where these lipoproteins are assembled. Several agents were developed to inhibit MTP wherever it is expressed, namely the liver and/or the intestine. Liver-specific MTP inhibitors reduce secretion of very low density lipoproteins (VLDL) mostly containing apoB100, while the intestine-specific ones reduce secretion of chylomicrons containing apoB48. These drugs can significantly reduce total cholesterol, LDL-C, TGs, VLDL cholesterol, as well as apoB levels in vivo. They may also exert anti-atherosclerotic and insulin-sensitizing effects. Limited clinical data suggest that these compounds can also improve the serum lipid profile in patients with homozygous familial hypercholesterolemia (HoFH). The accumulation of unsecreted fat in the liver and intestinal lumen is associated with elevation of aminotransferases and steatorrhea. Liver steatosis can be avoided by the use of intestine-specific MTP inhibitors, while steatorrhea by low-fat diet. Future indications for these developing drugs may include dyslipidemia associated with insulin resistant states, familial combined hyperlipidemia and HoFH. Future clinical trials are warranted to assess the efficacy and safety of MTP inhibitors in various clinical states. Topics: Animals; Apolipoproteins B; Benzamides; Benzimidazoles; Carrier Proteins; Dyslipidemias; Flavanones; Humans; Hypolipidemic Agents; Malonates; Methaqualone | 2013 |
1 other study(ies) available for jtt-130 and Dyslipidemias
Article | Year |
---|---|
JTT-130, a novel intestine-specific inhibitor of microsomal triglyceride transfer protein, improves hyperglycemia and dyslipidemia independent of suppression of food intake in diabetic rats.
We investigated the effects of JTT-130 on glucose and lipid metabolism independent of the suppression of feeding by comparing with pair-fed animals. Male Zucker diabetic fatty (ZDF) rats were divided into control, JTT-130 treatment, and pair-fed groups. The rats were fed with a regular powdered diet with or without JTT-130 as a food admixture for 6 weeks. We compared the effects on glucose and lipid metabolism in JTT-130 treatment group with those in pair-fed group. RESULTS. Hyperglycemia in ZDF rats was prevented in both JTT-130 treatment and pair-fed groups, but the prevention in pair-fed group became poor with time. Moreover, reduction in plasma cholesterol levels was observed only in JTT-130 treatment group. JTT-130 treatment group showed improved glucose tolerance at 5 weeks after treatment and significant elevation of portal glucagon-like peptide-1 (GLP-1) levels. The hepatic lipid content in JTT-130 treatment group was decreased as compared with pair-fed group. Furthermore, pancreatic protection effects, such as an increase in pancreatic weight and an elevation of insulin-positive area in islets, were observed after JTT-130 treatment. CONCLUSIONS. JTT-130 improves hyperglycemia and dyslipidemia via a mechanism independent of suppression of food intake, which is ascribed to an enhancement of GLP-1 secretion and a reduction of lipotoxicity. Topics: Animals; Benzamides; Carrier Proteins; Diabetes Complications; Diabetes Mellitus; Dyslipidemias; Enteroendocrine Cells; Gastrointestinal Agents; Glucagon-Like Peptide 1; Hyperglycemia; Hypoglycemic Agents; Hypolipidemic Agents; Lipid Metabolism; Liver; Male; Malonates; Obesity; Organ Size; Pancreas; Rats; Rats, Zucker | 2014 |