jtt-130 and Disease-Models--Animal

jtt-130 has been researched along with Disease-Models--Animal* in 1 studies

Other Studies

1 other study(ies) available for jtt-130 and Disease-Models--Animal

ArticleYear
JTT-130, a novel intestine-specific inhibitor of microsomal triglyceride transfer protein, ameliorates lipid metabolism and attenuates atherosclerosis in hyperlipidemic animal models.
    Journal of pharmacological sciences, 2015, Volume: 129, Issue:3

    JTT-130 was developed as an intestine-specific MTP inhibitor designed to rapidly catabolize after absorption to avoid causing hepatotoxicity due to hepatic MTP inhibition. In previous reports, we have demonstrated that JTT-130 suppresses dietary lipid absorption in the small intestine without inducing hepatic steatosis. Thus, in this report, JTT-130 was administered to hyperlipidemic animals fed a Western diet to investigate the effect of intestinal MTP inhibition on lipid metabolism and progression of atherosclerosis. JTT-130 potently lowered plasma non-high density lipoprotein-cholesterol, and elevated plasma high density lipoprotein-cholesterol (HDL-C), indicating improvement in atherogenic index in hamsters. HDL fractions obtained after two weeks treatment with JTT-130 significantly increased the efflux of cholesterol from macrophages, as an index parameter of HDL function. Furthermore, long-term treatment with JTT-130 also improved the plasma lipid profile without inducing hepatic steatosis in rabbits, resulting in the suppression of atherosclerosis formation in aortas. From these results, JTT-130 ameliorates lipid metabolism accompanied with the enhancement of the anti-atherosclerotic function of HDL, and attenuates the progression of atherosclerosis in hyperlipidemic animals. These findings indicate that intestinal MTP inhibition may be atherogenic in vivo and that JTT-130 may be a useful compound for the treatment of dyslipidemia and a potential anti-atherogenic drug.

    Topics: Animals; Atherosclerosis; Benzamides; Carrier Proteins; Cholesterol, HDL; Cricetinae; Diet, High-Fat; Disease Models, Animal; Disease Progression; Hyperlipidemias; Intestinal Mucosa; Lipid Metabolism; Male; Malonates; Mesocricetus; Rabbits

2015