jrf-12 and Disease-Models--Animal

jrf-12 has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for jrf-12 and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Antibacterial activity of a series of N2,N4-disubstituted quinazoline-2,4-diamines.
    Journal of medicinal chemistry, 2014, Apr-10, Volume: 57, Issue:7

    A series of N(2),N(4)-disubstituted quinazoline-2,4-diamines has been synthesized and tested against multidrug resistant Staphylococcus aureus. A structure-activity and structure-property relationship study was conducted to identify new hit compounds. This study led to the identification of N(2),N(4)-disubstituted quinazoline-2,4-diamines with minimum inhibitory concentrations (MICs) in the low micromolar range in addition to favorable physicochemical properties. Testing of biological activity revealed limited potential for resistance to these agents, low toxicity, and highly effective in vivo activity, even with low dosing regimens. Collectively, these characteristics make this compound series a suitable platform for future development of antibacterial agents.

    Topics: Animals; Anti-Bacterial Agents; Diamines; Disease Models, Animal; Hemolysis; Humans; Larva; Microbial Sensitivity Tests; Molecular Structure; Peritonitis; Quinazolines; Staphylococcal Infections; Staphylococcus aureus; Structure-Activity Relationship

2014