jnj-7777120 and Pneumonia

jnj-7777120 has been researched along with Pneumonia* in 2 studies

Other Studies

2 other study(ies) available for jnj-7777120 and Pneumonia

ArticleYear
Role of histamine H4 receptor ligands in bleomycin-induced pulmonary fibrosis.
    Pharmacological research, 2016, Volume: 111

    Fibrosis of lung tissue is a disease where a chronic inflammatory process determines a pathological remodelling of lung parenchyma. The animal model obtained by intra-tracheal administration of bleomycin in C57BL/6 mice is one of the most validated murine model. Bleomycin stimulates oxidative stress and the production of pro-inflammatory mediators. Histamine H4R have recently been implicated in inflammation and immune diseases. This study was focused to investigate the effects of H4R ligands in the modulation of inflammation and in the reduction of lung fibrosis in C57BL/6 mice treated with bleomycin. C57BL/6 mice were treated with vehicle, JNJ7777120 (JNJ, selective H4R antagonist) or ST-1006 (partial H4R agonist), ST-994 (H4R neutral antagonist) and ST-1012 (inverse H4R agonist) at equimolar doses, released by micro-osmotic pumps for 21days. Airway resistance to inflation was assayed and lung samples were processed to measure malondialdehyde (TBARS); 8-hydroxy-2'-deoxyguanosine (8OHdG); myeloperoxidase (MPO); COX-2 expression and activity as markers of oxidative stress and inflammation. Fibrosis and airway remodelling were evaluated throughout transforming growth factor-β (TGF-β), percentage of positive Goblet cells, smooth muscle layer thickness determination. Our results indicated that JNJ, ST-994 and ST-1012 decreased inflammation and oxidative stress markers, i.e. the number of infiltrating leukocytes evaluated as lung tissue MPO, COX-2 expression and activity, TBARS and 8OHdG production. They also reduced the level of TGF-β, a pro-fibrotic cytokine, collagen deposition, thickness of smooth muscle layer, Goblet cells hyperplasia; resulting in a decrease of airway functional impairment. The results here reported clearly demonstrated that H4R ligands have a beneficial effect in a model of lung fibrosis in the mouse, thus indicating that H4R antagonists or inverse agonists could be a novel therapeutic strategy for lung inflammatory diseases.

    Topics: Animals; Anti-Inflammatory Agents; Biomarkers; Bleomycin; Collagen; Cytoprotection; Disease Models, Animal; Drug Partial Agonism; Goblet Cells; Histamine Antagonists; Hyperplasia; Indoles; Inflammation Mediators; Ligands; Lung; Male; Mice, Inbred C57BL; Oxidative Stress; Piperazines; Pneumonia; Pulmonary Fibrosis; Pyrimidines; Receptors, Histamine H4; Signal Transduction; Transforming Growth Factor beta

2016
Prevention of bleomycin-induced lung inflammation and fibrosis in mice by naproxen and JNJ7777120 treatment.
    The Journal of pharmacology and experimental therapeutics, 2014, Volume: 351, Issue:2

    Pulmonary fibrosis, a progressive and lethal lung disease characterized by inflammation and accumulation of extracellular matrix components, is a major therapeutic challenge for which new therapeutic strategies are warranted. Cyclooxygenase (COX) inhibitors have been previously utilized to reduce inflammation. Histamine H4 receptor (H4R), largely expressed in hematopoietic cells, has been identified as a novel target for inflammatory and immune disorders. The aim of this study was to evaluate the effect of JNJ7777120 (1-[(5-chloro-1H-indol-2-yl)carbonyl]-4-methylpiperazine), a selective H4R antagonist, and naproxen, a well known nonsteroidal anti-inflammatory drug, and their combination in a murine model of bleomycin-induced fibrosis. Bleomycin (0.05 IU) was instilled intratracheally to C57BL/6 mice, which were then treated by micro-osmotic pump with vehicle, JNJ7777120 (40 mg/kg b.wt.), naproxen (21 mg/kg b.wt.), or a combination of both. Airway resistance to inflation, an index of lung stiffness, was assessed, and lung specimens were processed for inflammation, oxidative stress, and fibrosis markers. Both drugs alone were able to reduce the airway resistance to inflation induced by bleomycin and the inflammatory response by decreasing COX-2 and myeloperoxidase expression and activity and thiobarbituric acid-reactive substance and 8-hydroxy-2'-deoxyguanosine production. Lung fibrosis was inhibited, as demonstrated by the reduction of tissue levels of transforming growth factor-β, collagen deposition, relative goblet cell number, and smooth muscle layer thickness. Our results demonstrate that both JNJ7777120 and naproxen exert an anti-inflammatory and antifibrotic effect that is increased by their combination, which could be an effective therapeutic strategy in the treatment of pulmonary fibrosis.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Anti-Inflammatory Agents; Bleomycin; Collagen; Cyclooxygenase 2; Deoxyguanosine; Disease Models, Animal; Goblet Cells; Indoles; Lung; Mice; Muscle, Smooth; Naproxen; Oxidative Stress; Peroxidase; Piperazines; Pneumonia; Pulmonary Fibrosis; Thiobarbituric Acid Reactive Substances; Transforming Growth Factor beta

2014