jnj-7777120 and Hyperplasia

jnj-7777120 has been researched along with Hyperplasia* in 3 studies

Other Studies

3 other study(ies) available for jnj-7777120 and Hyperplasia

ArticleYear
Role of histamine H4 receptor ligands in bleomycin-induced pulmonary fibrosis.
    Pharmacological research, 2016, Volume: 111

    Fibrosis of lung tissue is a disease where a chronic inflammatory process determines a pathological remodelling of lung parenchyma. The animal model obtained by intra-tracheal administration of bleomycin in C57BL/6 mice is one of the most validated murine model. Bleomycin stimulates oxidative stress and the production of pro-inflammatory mediators. Histamine H4R have recently been implicated in inflammation and immune diseases. This study was focused to investigate the effects of H4R ligands in the modulation of inflammation and in the reduction of lung fibrosis in C57BL/6 mice treated with bleomycin. C57BL/6 mice were treated with vehicle, JNJ7777120 (JNJ, selective H4R antagonist) or ST-1006 (partial H4R agonist), ST-994 (H4R neutral antagonist) and ST-1012 (inverse H4R agonist) at equimolar doses, released by micro-osmotic pumps for 21days. Airway resistance to inflation was assayed and lung samples were processed to measure malondialdehyde (TBARS); 8-hydroxy-2'-deoxyguanosine (8OHdG); myeloperoxidase (MPO); COX-2 expression and activity as markers of oxidative stress and inflammation. Fibrosis and airway remodelling were evaluated throughout transforming growth factor-β (TGF-β), percentage of positive Goblet cells, smooth muscle layer thickness determination. Our results indicated that JNJ, ST-994 and ST-1012 decreased inflammation and oxidative stress markers, i.e. the number of infiltrating leukocytes evaluated as lung tissue MPO, COX-2 expression and activity, TBARS and 8OHdG production. They also reduced the level of TGF-β, a pro-fibrotic cytokine, collagen deposition, thickness of smooth muscle layer, Goblet cells hyperplasia; resulting in a decrease of airway functional impairment. The results here reported clearly demonstrated that H4R ligands have a beneficial effect in a model of lung fibrosis in the mouse, thus indicating that H4R antagonists or inverse agonists could be a novel therapeutic strategy for lung inflammatory diseases.

    Topics: Animals; Anti-Inflammatory Agents; Biomarkers; Bleomycin; Collagen; Cytoprotection; Disease Models, Animal; Drug Partial Agonism; Goblet Cells; Histamine Antagonists; Hyperplasia; Indoles; Inflammation Mediators; Ligands; Lung; Male; Mice, Inbred C57BL; Oxidative Stress; Piperazines; Pneumonia; Pulmonary Fibrosis; Pyrimidines; Receptors, Histamine H4; Signal Transduction; Transforming Growth Factor beta

2016
Histamine H4 receptor antagonism diminishes existing airway inflammation and dysfunction via modulation of Th2 cytokines.
    Respiratory research, 2010, Jun-24, Volume: 11

    Airway remodeling and dysfunction are characteristic features of asthma thought to be caused by aberrant production of Th2 cytokines. Histamine H4 receptor (H4R) perturbation has previously been shown to modify acute inflammation and Th2 cytokine production in a murine model of asthma. We examined the ability of H4R antagonists to therapeutically modify the effects of Th2 cytokine production such as goblet cell hyperplasia (GCH), and collagen deposition in a sub-chronic model of asthma. In addition, effects on Th2 mediated lung dysfunction were also determined.. Mice were sensitized to ovalbumin (OVA) followed by repeated airway challenge with OVA. After inflammation was established mice were dosed with the H4R antagonist, JNJ 7777120, or anti-IL-13 antibody for comparison. Airway hyperreactivity (AHR) was measured, lungs lavaged and tissues collected for analysis.. Therapeutic H4R antagonism inhibited T cell infiltration in to the lung and decreased Th2 cytokines IL-13 and IL-5. IL-13 dependent remodeling parameters such as GCH and lung collagen were reduced. Intervention with H4R antagonist also improved measures of central and peripheral airway dysfunction.. These data demonstrate that therapeutic H4R antagonism can significantly ameliorate allergen induced, Th2 cytokine driven pathologies such as lung remodeling and airway dysfunction. The ability of H4R antagonists to affect these key manifestations of asthma suggests their potential as novel human therapeutics.

    Topics: Airway Remodeling; Animals; Anti-Inflammatory Agents; Antibodies; Asthma; Bronchial Hyperreactivity; Bronchial Provocation Tests; Collagen; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Goblet Cells; Histamine Antagonists; Hyperplasia; Indoles; Inflammation Mediators; Interleukin-13; Interleukin-5; Mice; Mice, Inbred BALB C; Ovalbumin; Piperazines; Receptors, G-Protein-Coupled; Receptors, Histamine; Receptors, Histamine H4; Th2 Cells

2010
Structure-activity studies on a series of a 2-aminopyrimidine-containing histamine H4 receptor ligands.
    Journal of medicinal chemistry, 2008, Oct-23, Volume: 51, Issue:20

    A series of 2-aminopyrimidines was synthesized as ligands of the histamine H4 receptor (H4R). Working in part from a pyrimidine hit that was identified in an HTS campaign, SAR studies were carried out to optimize the potency, which led to compound 3, 4- tert-butyl-6-(4-methylpiperazin-1-yl)pyrimidin-2-ylamine. We further studied this compound by systematically modifying the core pyrimidine moiety, the methylpiperazine at position 4, the NH2 at position 2, and positions 5 and 6 of the pyrimidine ring. The pyrimidine 6 position benefited the most from this optimization, especially in analogs in which the 6- tert-butyl was replaced with aromatic and secondary amine moieties. The highlight of the optimization campaign was compound 4, 4-[2-amino-6-(4-methylpiperazin-1-yl)pyrimidin-4-yl]benzonitrile, which was potent in vitro and was active as an anti-inflammatory agent in an animal model and had antinociceptive activity in a pain model, which supports the potential of H 4R antagonists in pain.

    Topics: Animals; Biomarkers; Histamine Antagonists; Humans; Hyperplasia; Ligands; Locomotion; Mice; Molecular Structure; Pyrimidines; Rats; Receptors, Histamine; Structure-Activity Relationship; Substrate Specificity

2008