jhw-015 and Neuralgia

jhw-015 has been researched along with Neuralgia* in 2 studies

Other Studies

2 other study(ies) available for jhw-015 and Neuralgia

ArticleYear
Treatment with carbon monoxide-releasing molecules and an HO-1 inducer enhances the effects and expression of µ-opioid receptors during neuropathic pain.
    Anesthesiology, 2013, Volume: 118, Issue:5

    The administration of µ-opioid receptors (MOR) and δ-opioid receptors (DOR) as well as cannabinoid-2 receptor (CB2R) agonists attenuates neuropathic pain. We investigated if treatment with two carbon monoxide-releasing molecules (CORM-2 and CORM-3) or an inducible heme oxygenase inducer (cobalt protoporphyrin IX, CoPP) could modulate the local and systemic effects and expression of MOR, DOR, and CB2R during neuropathic pain.. In C57BL/6 mice, at 10 days after the chronic constriction of sciatic nerve, we evaluated the effects of the intraperitoneal administration of 10 mg/kg of CORM-2, CORM-3, or CoPP on the antiallodynic and antihyperalgesic actions of a locally or systemically administered MOR (morphine), DOR ([d-Pen(2),d-Pen(5)]-enkephalin) or CB2R ((2-methyl-1-propyl-1H-indol-3-yl)-1-naphthalenylmethanone ) agonist. The effects of CORM-2 and CoPP treatments on the expression of MOR, DOR, CB2R, inducible and constitutive heme oxygenases, microglia activation marker (CD11b/c), and neuronal and inducible nitric oxide synthases were also assessed.. Treatments with CO-RMs and CoPP reduced the mechanical and thermal hypersensitivity induced by sciatic nerve injury, increased the local, but not systemic, antinociceptive effects of morphine, and decreased those produced by DPDPE and JWH-015. Both CORM-2 and CoPP treatments enhanced MOR and inducible heme oxygenase expression, unaltered DOR and constitutive heme oxygenase expression, and decreased the overexpression of CB2R, CD11b/c, and neuronal and inducible nitric oxide synthases induced by sciatic nerve injury.. This study shows that CO-RMs and CoPP treatments increase the local antinociceptive effects of morphine through enhancing MOR peripheral expression and inhibiting spinal microglial activation and overexpression of neuronal/inducible nitric oxide synthases.

    Topics: Analgesics, Opioid; Animals; Carbon Monoxide; Constriction, Pathologic; Enkephalin, D-Penicillamine (2,5)-; Enzyme Induction; Heme Oxygenase-1; Hot Temperature; Indoles; Male; Mice; Mice, Inbred C57BL; Morphine; Neuralgia; Organometallic Compounds; Pain Measurement; Physical Stimulation; Protoporphyrins; Receptor, Cannabinoid, CB2; Receptors, Opioid, delta; Receptors, Opioid, mu

2013
Spinal cannabinoid receptor type 2 agonist reduces mechanical allodynia and induces mitogen-activated protein kinase phosphatases in a rat model of neuropathic pain.
    The journal of pain, 2012, Volume: 13, Issue:9

    Peripheral nerve injury generally results in spinal neuronal and glial plastic changes associated with chronic behavioral hypersensitivity. Spinal mitogen-activated protein kinases (MAPKs), eg, p38 or extracellular signal-regulated kinases (ERKs), are instrumental in the development of chronic allodynia in rodents, and new p38 inhibitors have shown potential in acute and neuropathic pain patients. We have previously shown that the cannabinoid type 2 receptor agonist JWH015 inhibits ERK activity by inducing MAPK phosphatase (MKP)-1 and MKP-3 (the major regulators of MAPKs) in vitro in microglial cells. Therefore, we decided to investigate the role of these phosphatases in the mechanisms of action of JWH015 in vivo using the rat L5 nerve transection model of neuropathic pain. We observed that peripheral nerve injury reduced spinal MKP-1/3 expression and activity and that intrathecal JWH015 reduced established L5 nerve injury-induced allodynia, enhanced spinal MKP-1/3 expression and activity, and reduced the phosphorylated form of p38 and ERK-1/2. Triptolide, a pharmacological blocker of MKP-1 and MKP-3 expression, inhibited JWH015's effects, suggesting that JWH015 exerts its antinociceptive effects by modulating MKP-1 and MKP-3. JWH015-induced antinociception and MKP-1 and MKP-3 expression were inhibited by the cannabinoid type 2 receptor antagonist AM630. Our data suggest that MKP-1 and MKP-3 are potential targets for novel analgesic drugs.. MAPKs are pivotal in the development of chronic allodynia in rodent models of neuropathic pain. A cannabinoid type 2 receptor agonist, JWH015, reduced neuropathic allodynia in rats by reducing MAPK phosphorylation and inducing spinal MAPK phosphatases 1 and 3, the major regulators of MAPKs.

    Topics: 4-Nitrophenylphosphatase; Animals; Disease Models, Animal; Diterpenes; Dual Specificity Phosphatase 1; Dual Specificity Phosphatase 6; Epoxy Compounds; Gene Expression Regulation; Hyperalgesia; Immunosuppressive Agents; Indoles; Male; Mitogen-Activated Protein Kinase Phosphatases; Nerve Tissue Proteins; Neuralgia; Phenanthrenes; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB2; Signal Transduction; Spinal Cord; Time Factors

2012