jhw-015 has been researched along with Cancer-Pain* in 2 studies
2 other study(ies) available for jhw-015 and Cancer-Pain
Article | Year |
---|---|
Cannabinoid receptor 2‑selective agonist JWH015 attenuates bone cancer pain through the amelioration of impaired autophagy flux induced by inflammatory mediators in the spinal cord.
Bone cancer pain (BCP) is a severe complication of advanced bone cancer. Although cannabinoid receptor 2 (CB2) agonists may have an analgesic effect, the underlying mechanism remains unclear. CB2 serves a protective role in various pathological states through the activation of autophagy. Therefore, the present study aimed to determine whether the analgesic effects of the selective CB2 agonist JWH015 was mediated by the activation of autophagy in BCP. BCP was induced by the intra‑femur implantation of NCTC2472 fibrosarcoma cells in C3H/HeN mice. The pain behaviors were assessed on the following postoperative days. The selective CB2 agonist JWH015 (1 and 2 µg) was intrathecally administered on day 14 following implantation. AM630 (1 µg), a CB2 antagonist, was injected 30 min before JWH015 administration. Lipopolysaccharide (LPS; 100 nM)‑stimulated primary neurons were treated with JWH015 (1 µM) and AM630 (1 µM) to further verify the mechanism by which CB2 affects autophagy. The results demonstrated that autophagy flux was impaired in spinal neurons during BCP, as indicated by the increased ratio of microtubule‑associated protein 1 light chain 3β (LC3B)‑II/LC3B‑I and increased expression of p62. Intrathecal administration of JWH015 attenuated BCP, which was accompanied by the amelioration of impaired autophagy flux (decreased LC3B‑II/LC3B‑I ratio and decreased p62expression). In addition, the activation of glia cells and upregulation of the glia‑derived inflammatory mediators, interleukin (IL)‑1β and IL‑6 were suppressed by JWH015. In LPS‑stimulated primary neurons, IL‑1β and IL‑6 were increased, and autophagy flux was impaired; whereas treatment with JWH015 decreased the expression of IL‑1β and IL‑6, LC3B‑II/LC3B‑I ratio and expression of p62. These effects were by pretreatment with the CB2‑selective antagonist AM630. The results of the present study suggested that the impairment of autophagy flux was induced by glia‑derived inflammatory mediators in spinal neurons. Intrathecal administration of the selective CB2 agonist JWH015 ameliorated autophagy flux through the downregulation of IL‑1β and IL‑6 and attenuated BCP. Topics: Animals; Autophagy; Bone Neoplasms; Cancer Pain; Cannabinoid Receptor Agonists; Cytokines; Disease Models, Animal; Dose-Response Relationship, Drug; Indoles; Inflammation Mediators; Injections, Spinal; Male; Mice; Neuroglia; Neurons; Pain Management; Rats; Receptor, Cannabinoid, CB2; Spinal Cord | 2019 |
A Single Intrathecal or Intraperitoneal Injection of CB2 Receptor Agonist Attenuates Bone Cancer Pain and Induces a Time-Dependent Modification of GRK2.
The objective of this study was to explore the potential role of G-protein-coupled receptor kinase 2 (GRK2) in the progression of cannabinoid 2 receptor (CB2) agonist-induced analgesic effects of bone cancer pain. Female Sprague-Dawley rats, weighing 160-180 g, were utilized to establish a model of bone cancer pain induced by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells. JWH-015, a selective CB2 agonist, was injected intrathecally or intraperitoneally on postoperative day 10. Bone cancer-induced pain behaviors-mechanical allodynia and ambulatory pain-were assessed on postoperative days -1 (baseline), 4, 7, and 10 and at post-treatment hours 2, 6, 24, 48, and 72. The expressions of spinal CB2 and GRK2 protein were detected by Western Blotting on postoperative days -1 (baseline), 4, 7, and 10 and at post-treatment hours 6, 24, and 72. The procedure produced prolonged mechanical allodynia, ambulatory pain, and different changes in spinal CB2 and GRK2 expression levels. Intrathecal or intraperitoneal administration of JWH-015 alleviated the induced mechanical allodynia and ambulatory pain, and inhibited the downregulation of spinal GRK2 expression. These effects were in a time-dependent manner and reversed by pretreatment of CB2 selective antagonist AM630. The results affirmed CB2 receptor agonists might serve as new treatment targets for bone cancer pain. Moreover, spinal GRK2 was an important regulator of CB2 receptor agonist-analgesia pathway. Topics: Animals; Bone Neoplasms; Cancer Pain; Cell Line, Tumor; Female; G-Protein-Coupled Receptor Kinase 2; Indoles; Injections, Intraperitoneal; Injections, Spinal; Pain Measurement; Random Allocation; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB2; Time Factors | 2017 |