jasplakinolide has been researched along with Reperfusion-Injury* in 1 studies
1 other study(ies) available for jasplakinolide and Reperfusion-Injury
Article | Year |
---|---|
Rho-kinase-dependent F-actin rearrangement is involved in the inhibition of PI3-kinase/Akt during ischemia-reperfusion-induced endothelial cell apoptosis.
Activation of cytoskeleton regulator Rho-kinase during ischemia-reperfusion (I/R) plays a major role in I/R injury and apoptosis. Since Rho-kinase is a negative regulator of the pro-survival phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway, we hypothesized that inhibition of Rho-kinase can prevent I/R-induced endothelial cell apoptosis by maintaining PI3-kinase/Akt activity and that protective effects of Rho-kinase inhibition are facilitated by prevention of F-actin rearrangement. Human umbilical vein endothelial cells were subjected to 1 h of simulated ischemia and 1 or 24 h of simulated reperfusion after treatment with Rho-kinase inhibitor Y-27632, PI3-kinase inhibitor wortmannin, F-actin depolymerizers cytochalasinD and latrunculinA and F-actin stabilizer jasplakinolide. Intracellular ATP levels decreased following I/R. Y-27632 treatment reduced I/R-induced apoptosis by 31% (P < 0.01) and maintained Akt activity. Both effects were blocked by co-treatment with wortmannin. Y-27632 treatment prevented the formation of F-actin bundles during I/R. Similar results were observed with cytochalasinD treatment. In contrast, latrunculinA and jasplakinolide treatment did not prevent the formation of F-actin bundles during I/R and had no effect on I/R-induced apoptosis. Apoptosis and Akt activity were inversely correlated (R (2) = 0.68, P < 0.05). In conclusion, prevention of F-actin rearrangement by Rho-kinase inhibition or by cytochalasinD treatment attenuated I/R-induced endothelial cell apoptosis by maintaining PI3-kinase and Akt activity. Topics: Actins; Amides; Androstadienes; Apoptosis; Bridged Bicyclo Compounds, Heterocyclic; Cells, Cultured; Cytochalasin D; Depsipeptides; Endothelium, Vascular; Humans; Phosphoinositide-3 Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Pyridines; Reperfusion Injury; rho-Associated Kinases; Thiazolidines; Wortmannin | 2008 |