ixazomib has been researched along with Osteosarcoma* in 2 studies
2 other study(ies) available for ixazomib and Osteosarcoma
Article | Year |
---|---|
Pre-clinical evaluation of proteasome inhibitors for canine and human osteosarcoma.
Osteosarcoma, a common malignancy in large dog breeds, typically metastasises from long bones to lungs and is usually fatal within 1 to 2 years of diagnosis. Better therapies are needed for canine patients and their human counterparts, a third of whom die within 5 years of diagnosis. We compared the in vitro sensitivity of canine osteosarcoma cells derived from 4 tumours to the currently used chemotherapy drugs doxorubicin and carboplatin, and 4 new anti-cancer drugs. Agents targeting histone deacetylases or PARP were ineffective. Two of the 4 cell lines were somewhat sensitive to the BH3-mimetic navitoclax. The proteasome inhibitor bortezomib potently induced caspase-dependent apoptosis, at concentrations substantially lower than levels detected in the bones and lungs of treated rodents. Co-treatment with bortezomib and either doxorubicin or carboplatin was more toxic to canine osteosarcoma cells than each agent alone. Newer proteasome inhibitors carfilzomib, ixazomib, oprozomib and delanzomib manifested similar activities to bortezomib. Human osteosarcoma cells were as sensitive to bortezomib as the canine cells, but slightly less sensitive to the newer drugs. Human osteoblasts were less sensitive to proteasome inhibition than osteosarcoma cells, but physiologically relevant concentrations were toxic. Such toxicity, if replicated in vivo, may impair bone growth and strength in adolescent human osteosarcoma patients, but may be tolerated by canine patients, which are usually diagnosed later in life. Proteasome inhibitors such as bortezomib may be useful for treating canine osteosarcoma, and ultimately may improve outcomes for human patients if their osteoblasts survive exposure in vivo, or if osteoblast toxicity can be managed. Topics: Aniline Compounds; Animals; Antineoplastic Agents; Bone Neoplasms; Boron Compounds; Boronic Acids; Bortezomib; Carboplatin; Cell Line, Tumor; Dog Diseases; Dogs; Doxorubicin; Glycine; Humans; Oligopeptides; Osteosarcoma; Proteasome Inhibitors; Sulfonamides; Threonine | 2018 |
A New Perspective for Osteosarcoma Therapy: Proteasome Inhibition by MLN9708/2238 Successfully Induces Apoptosis and Cell Cycle Arrest and Attenuates the Invasion Ability of Osteosarcoma Cells in Vitro.
The proteasome exists in all eukaryotic cells and provides the main route of intracellular proteins degradation involved in cell growth and apoptosis. Proteasome inhibition could block protein degradation pathways and disturb regulatory networks, possibly leading to profound effects on cell growth, particularly in cancer cells. A proteasome inhibitor with an appropriate toxicity index for malignant cells rather than normal cells would be an attractive anticancer therapy.. The human osteosarcoma (OS) cell lines MG-63 and Saos-2 and normal osteoblast cells were used to study the antitumour activity of the proteasome inhibitor MLN9708/2238.. MLN2238 inhibited cell growth, induced cell cycle arrest and apoptosis, and attenuated the invasion abilities of MG-63 and Saos-2 cells, with little cytotoxicity to normal cells. In addition, MLN2238 promoted antitumour mechanisms including the accumulation of E2F1, P53, P21 and other negative G2/M checkpoint proteins; up-regulated the relative expression ratio of BAX/BCL-2, APAF-1 and pro-apoptotic proteins of the BCL-2 family; triggered mitochondrial outer membrane permeabilization (MOMP); down-regulated BCL-2 and XIAP; activated caspase3/8/9; and suppressed MMP2/9 expression and secretion levels.. The proteasome may be a novel biochemical target for OS treatment in vitro. Our study provides a promising mechanistic framework for MLN9708/2238 in OS treatment, supporting its clinical development. Topics: Apoptosis; bcl-2-Associated X Protein; Boron Compounds; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Membrane Permeability; Cell Movement; Cyclin-Dependent Kinase Inhibitor p21; Down-Regulation; E2F1 Transcription Factor; G2 Phase Cell Cycle Checkpoints; Glycine; Humans; M Phase Cell Cycle Checkpoints; Mitochondria; Osteosarcoma; Proteasome Endopeptidase Complex; Proto-Oncogene Proteins c-bcl-2; Tumor Suppressor Protein p53; Up-Regulation | 2017 |