ivosidenib has been researched along with Disease-Models--Animal* in 2 studies
2 other study(ies) available for ivosidenib and Disease-Models--Animal
Article | Year |
---|---|
Topics: Adult; Aged; Aged, 80 and over; Air Pollutants; Air Pollution; Animals; Anti-Bacterial Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Antibodies, Monoclonal, Humanized; Antigens, Surface; Antineoplastic Agents; Antioxidants; Antiviral Agents; Aporphines; Atherosclerosis; Benzoyl Peroxide; beta Catenin; Biofilms; Biomarkers; Brain; Cannabis; Carcinoma, Squamous Cell; Case-Control Studies; CD4 Lymphocyte Count; CD4-Positive T-Lymphocytes; CD8-Positive T-Lymphocytes; Cell Line; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cell Survival; Child; China; Chlorides; Chlorophyll; Cholesterol, LDL; Coinfection; Corylus; Cross-Sectional Studies; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Developmental Disabilities; Disease Models, Animal; Drug Evaluation, Preclinical; Drug Screening Assays, Antitumor; Electroencephalography; Environmental Exposure; Enzyme Inhibitors; Epilepsy, Generalized; Ethnicity; Female; Fertilization in Vitro; Fluorescent Dyes; Follow-Up Studies; Forecasting; Glutamate Carboxypeptidase II; Glycine; Half-Life; Head and Neck Neoplasms; Health Communication; Heart Ventricles; Hepacivirus; Hepatitis C; Heterosexuality; HIV Infections; Humans; Hypercholesterolemia; Immunoassay; Inhalation Exposure; Isocitrate Dehydrogenase; Laryngeal Neoplasms; Ligands; Light; Lipopolysaccharide Receptors; Liver Cirrhosis; Lung; Lung Neoplasms; Magnetic Resonance Imaging, Cine; Male; Maternal Age; Mechanical Phenomena; Mice; Mice, Nude; Mice, SCID; Microglia; MicroRNAs; Microscopy, Fluorescence; Microsomes, Liver; Middle Aged; Minority Groups; Mitochondrial Membrane Transport Proteins; Models, Biological; Molecular Structure; Molecular Weight; Monte Carlo Method; Muscle Hypotonia; Mutagenesis, Site-Directed; Mutation, Missense; Natriuretic Peptide, Brain; Neoplasms; Nickel; Nitric Oxide; Optical Imaging; Oxides; Particle Size; Particulate Matter; PCSK9 Inhibitors; Peptide Fragments; Phenotype; Photochemotherapy; Photosensitizing Agents; Phytochemicals; Piper; Placenta Growth Factor; Plant Extracts; Plant Leaves; Plant Stems; Platinum; Point-of-Care Testing; Population Surveillance; Postpartum Period; Pregnancy; Pregnancy, Twin; Prevalence; Prospective Studies; Prostatic Neoplasms; Pseudomonas aeruginosa; Pyridines; Pyridones; Racial Groups; Rats; Respiratory Physiological Phenomena; Retrospective Studies; Risk Factors; RNA, Long Noncoding; Semiconductors; Sexual and Gender Minorities; Sexual Behavior; Social Media; Sodium; Solubility; Stereoisomerism; Stochastic Processes; Structure-Activity Relationship; Substance-Related Disorders; Sustained Virologic Response; Sweat; Temperature; Time Factors; Tissue Distribution; Titanium; Transplantation, Heterologous; Tumor Cells, Cultured; Tungsten; Tyramine; United States; Up-Regulation; Ventricular Dysfunction, Left; Ventricular Function, Left; Veterans; Xenograft Model Antitumor Assays; Young Adult | 2021 |
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |