ivabradine has been researched along with Disease Models, Animal in 56 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 5 (8.93) | 29.6817 |
2010's | 40 (71.43) | 24.3611 |
2020's | 11 (19.64) | 2.80 |
Authors | Studies |
---|---|
Bertero, A; Cain, K; Dupras, S; El-Nachef, D; Futakuchi-Tsuchida, A; Jayabalu, A; Kalucki, FA; Kattman, S; Knollmann, BC; MacLellan, WR; Marchianò, S; Murry, CE; Nakamura, DS; Nakamura, K; Neidig, LE; Pabon, L; Reinecke, H; Robinson, MR; Thies, RS; Tian, R; Tsuchida, H; Weber, GJ; Whittington, D; Yang, X | 1 |
Bao, Q; Gong, M; Li, G; Li, Y; Shao, S; Suo, Y; Wang, X; Yang, Q; Yuan, M; Zhang, Y | 1 |
Aimoto, M; Kawakami, S; Nagasawa, Y; Takahara, A | 1 |
Dostal, C; Ebner, J; Hackl, B; Hilber, K; Kiss, A; Koenig, X; Kubista, H; Marksteiner, J; Podesser, BK; Sauer, J; Szabo, PL; Todt, H | 1 |
Adamcova, M; Aziriova, S; Baka, T; Krajcirovicova, K; Paulis, L; Repova, K; Simko, F | 1 |
Amstetter, D; Badt, F; Bittner, RE; Ebner, J; Hilber, K; Koenig, X; Rubi, L; Todt, H; Uhrin, P | 1 |
Kruszewski, M; Leszek, P; Mackiewicz, U; Mączewski, M; Oknińska, M; Paterek, A; Śmigielski, W; Sochanowicz, B | 1 |
Botana, L; Diez-Mata, J; Hernandez, I; Ramirez-Carracedo, R; Sanchez, S; Saura, M; Tesoro, L; Zamorano, JL; Zaragoza, C | 1 |
Abdelkader, NF; Ahmed, MAE; Elbadawy, NN; Saad, MA | 1 |
Daniluk, J; Drop, B; Sawicka, KM; Szczyrek, M; Szpringer, M; Wawryniuk, A; Załuska, K; Załuska-Patel, K; Żółkowska, D; Łuszczki, JJ | 1 |
Granzier, H; Slater, RE; Strom, JG | 1 |
Dechering, DG; Eckardt, L; Ellermann, C; Frommeyer, G; Kaese, S; Kochhäuser, S; Lange, PS; Weller, J | 1 |
Laínez, S; McNaughton, PA; Mehta, I; Tsantoulas, C; Vilar, B; Wong, S | 1 |
Bemme, S; Gollisch, T; Weick, M | 1 |
Bijnens, B; Friedberg, MK; Gomez, O; Honjo, O; Ishii, R; Okumura, K; Sun, M | 1 |
El-Gowilly, SM; El-Naggar, AE; Sharabi, FM | 1 |
Abe, K; Arimura, T; Kamada, K; Kishi, T; Mannoji, H; Nishikawa, T; Saku, K; Sunagawa, G; Sunagawa, K; Tsutsui, H | 1 |
Chen, S; Hu, Z; Li, B; Wang, Z; Yu, Y | 1 |
Alonso Salinas, GL; Castejón Navarro, B; Cuadrado Berrocal, I; Díez, J; Hernández Navarro, I; Largo Aramburu, C; Osorio Ruiz, Á; Pascual Izco, M; Ramírez-Carracedo, R; Sanmartín, M; Saura Redondo, M; Zamorano, JL; Zaragoza, C | 1 |
Evans, PC; Gaalen, KV; Gijsen, FJH; Meester, EJ; Moerman, AM; Ridwan, RY; Van der Heiden, K; van der Steen, AFW; Xing, R | 1 |
Chan, CS; Chang, SL; Chen, SA; Chen, YC; Chen, YJ; Kao, YH; Lin, YK | 1 |
Chen, S; Wu, X; Wu, Z; Ye, F; You, W | 1 |
Akiyama, T; Iwanaga, Y; Kakehi, K; Miyazaki, S; Shimizu, S; Sonobe, T; Watanabe, H; Yamamoto, H | 1 |
Chen, L; Hua, T; Yang, M; Yang, Z; Zou, Y | 1 |
Belardinelli, L; Kanas, AF; Machado, AD; Nearing, BD; Pagotto, VP; Sobrado, LF; Sobrado, MF; Varone, BB; Verrier, RL; Zeng, D | 1 |
Andres-Mach, M; Florek-Łuszczki, M; Luszczki, JJ; Marzęda, E; Prystupa, A | 1 |
Bukhanova, N; Chen, Y; Kumar, N; Noh, S; Smith, PA; Stemkowsi, PL | 1 |
Batatinha, JA; Belardinelli, L; Bonatti, R; Liu, G; Nearing, BD; Rajamani, S; Silva, AF; Verrier, RL; Zeng, D | 1 |
Alig, J; Bidaud, I; Dubel, S; Ehmke, H; Engeland, B; Eschenhagen, T; Fernandez, A; Isbrandt, D; Mangoni, ME; Marger, L; Marquilly, C; Mesirca, P; Miquerol, L; Müller, JC; Nargeot, J; Rollin, A; Seniuk, A; Singh, J; Torrente, AG; Vincent, A; Wickman, K | 1 |
Berdeaux, A; Bizé, A; Ghaleh, B; Hittinger, L; Jozwiak, M; Melka, J; Rienzo, M; Sambin, L; Su, JB | 2 |
Chen, SL; Hu, ZY; Li, B; Li, MH; Zuo, GF | 1 |
Hong, YF; Ji, YT; Jiang, T; Li, JX; Li, YD; Tang, BP; Xing, Q; Xiong, J; Yusufuaji, Y; Zhou, XH | 1 |
Alexopoulos, D; Apostolakis, E; Hahalis, G; Koniari, I; Mavrilas, D; Papadaki, H; Papadimitriou, E; Papalois, A; Poimenidi, E; Xanthopoulou, I | 1 |
Beyers, RJ; French, BA; Hossack, JA; Lin, D; O'Connor, DM; Piras, BA; Smith, RS | 1 |
Bolduc, V; Des Rosiers, C; Lachance, D; Lauzier, B; Rivard, ME; Ruiz, M; Shi, Y; Tardif, JC; Thorin, E; Vaillant, F | 1 |
Balarini, MM; Balthazar, DS; Bouskela, E; Miranda, ML; Paes, LS; Santos, MS | 1 |
Cao, X; Li, X; Sun, Z; Xia, H; Zhang, B | 1 |
Heusch, G | 2 |
Belhani, D; Bricca, G; Bui-Xuan, B; Chevalier, P; Descotes, J; Manati, W; Tabib, A; Timour, Q; Vaillant, F | 1 |
Delcayre, C; Messaoudi, S; Milliez, P; Nehme, J; Rodriguez, C; Samuel, JL | 1 |
Asta, A; Bouly, M; Cervetto, L; Della Santina, L; Demontis, GC; Gargini, C | 1 |
Gardier, S; Pedretti, S; Raddatz, E; Sarre, A | 1 |
Christensen, LP; Tomanek, RJ; Zhang, RL | 1 |
Baumhäkel, M; Böhm, M; Custodis, F; Laufs, U; Schlimmer, N | 1 |
Belhani, D; Bui-Xuan, B; Chevalier, P; Dehina, L; Descotes, J; Mazzadi, A; Riera, C; Tabib, A; Timour, Q; Vaillant, F | 1 |
Bolduc, V; Des Rosiers, C; Drouin, A; Duquette, N; Frayne-Robillard, I; Gillis, MA; Tardif, JC; Thorin, E; Thorin-Trescases, N | 1 |
Daiber, A; Hortmann, M; Kleschyov, AL; Kröller-Schön, S; Münzel, T; Oelze, M; Renné, T; Schulz, E; Torzewski, M; Wenzel, P | 1 |
Brakenhielm, E; Debunne, M; Fang, Y; Henry, JP; Lallemand, F; Mulder, P; Richard, V; Thuillez, C; Vercauteren, M | 1 |
Becher, PM; Lindner, D; Miteva, K; Savvatis, K; Schmack, B; Schultheiss, HP; Tschöpe, C; Van Linthout, S; Westermann, D; Zietsch, C | 1 |
Jia-Feng, L; Li-Sha, G; Na-Dan, Z; Qin, L; Teng, Z; Xue-Qiang, G; Yue-Chun, L | 1 |
Bui-Xuan, B; Chevalier, P; Dehina, L; Descotes, J; Dizerens, N; Lauzier, B; Tabib, A; Timour, Q; Vaillant, F | 1 |
Cho, KI; Han, J; Kim, BH; Kim, IJ; Kim, JY; Kim, N; Kim, SM | 1 |
Brockert, M; Gams, E; Langenbach, MR; Pomblum, VJ; Schepan, M; Schipke, JD; Schmitz-Spanke, S; Zirngibl, H | 1 |
Mackiewicz, U; Maczewski, M | 1 |
1 review(s) available for ivabradine and Disease Models, Animal
Article | Year |
---|---|
Heart rate and heart failure. Not a simple relationship.
Topics: Animals; Benzazepines; Cardiac Pacing, Artificial; Coronary Artery Disease; Disease Models, Animal; Heart Failure; Heart Rate; Humans; Ivabradine; Models, Cardiovascular; Multicenter Studies as Topic; Myocardial Ischemia; Myocardium; Randomized Controlled Trials as Topic; Stress, Mechanical; Tachycardia; Tachycardia, Supraventricular; Treatment Outcome; Ventricular Dysfunction, Left; Vertebrates | 2011 |
55 other study(ies) available for ivabradine and Disease Models, Animal
Article | Year |
---|---|
Pharmacologic therapy for engraftment arrhythmia induced by transplantation of human cardiomyocytes.
Topics: Amiodarone; Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Cell Line; Cell- and Tissue-Based Therapy; Disease Models, Animal; Drug Combinations; Humans; Ivabradine; Male; Myocardial Infarction; Myocytes, Cardiac; Pluripotent Stem Cells; Stem Cell Transplantation; Swine; Tachycardia | 2021 |
Ivabradine Ameliorates Cardiac Function in Heart Failure with Preserved and Reduced Ejection Fraction via Upregulation of miR-133a.
Topics: Animals; Animals, Newborn; Cardiotonic Agents; Cells, Cultured; Diastole; Disease Models, Animal; Fibroblasts; Heart Failure; Heart Ventricles; Ivabradine; Male; Mice; Mice, Inbred C57BL; MicroRNAs; Rats; Rats, Sprague-Dawley; Signal Transduction; Stroke Volume; Systole; Transfection; Treatment Outcome; Up-Regulation; Ventricular Dysfunction, Left | 2021 |
Torsadogenic Potential of HCN Channel Blocker Ivabradine Assessed in the Rabbit Proarrhythmia Model.
Topics: Animals; Atrioventricular Block; Cardiovascular Agents; Disease Models, Animal; Electrocardiography; Heart Rate; Hemodynamics; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels; Ivabradine; Male; Rabbits; Torsades de Pointes | 2021 |
Ivabradine acutely improves cardiac Ca handling and function in a rat model of Duchenne muscular dystrophy.
Topics: Animals; Disease Models, Animal; Dystrophin; Ivabradine; Mice; Mice, Inbred mdx; Muscular Dystrophy, Duchenne; Myocytes, Cardiac; Rats | 2023 |
Ivabradine improves survival and attenuates cardiac remodeling in isoproterenol-induced myocardial injury.
Topics: Animals; Cardiotonic Agents; Disease Models, Animal; Heart Failure; Isoproterenol; Ivabradine; Male; Myocardial Infarction; Rats; Rats, Wistar; Ventricular Function, Left; Ventricular Remodeling | 2021 |
The bradycardic agent ivabradine decreases conduction velocity in the AV node and in the ventricles in-vivo.
Topics: Action Potentials; Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Atrioventricular Node; Cardiac Pacing, Artificial; Disease Models, Animal; Electrocardiography; Female; Heart Rate; Ivabradine; Mice, Inbred C57BL; Time Factors | 2021 |
Ivabradine prevents deleterious effects of dopamine therapy in heart failure: No role for HCN4 overexpression.
Topics: Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Disease Models, Animal; Dopamine; Female; Heart Failure; Heart Rate; Humans; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels; Ivabradine; Male; Muscle Proteins; Myocardium; Potassium Channels; Rats, Wistar; Ventricular Function, Left; Ventricular Remodeling | 2021 |
Ivabradine Induces Cardiac Protection against Myocardial Infarction by Preventing Cyclophilin-A Secretion in Pigs under Coronary Ischemia/Reperfusion.
Topics: Animals; Basigin; Biomarkers; Cardiotonic Agents; Cyclophilin A; Disease Models, Animal; Gene Expression Regulation; Heart; Humans; Ivabradine; Myocardial Infarction; Swine; Vesicle-Associated Membrane Protein 1 | 2021 |
Nano-ivabradine averts behavioral anomalies in Huntington's disease rat model via modulating Rhes/m-tor pathway.
Topics: Animals; Autophagy; Cardiovascular Agents; Corpus Striatum; Disease Models, Animal; Huntington Disease; Ivabradine; Male; Nanoparticle Drug Delivery System; Neuroprotective Agents; Nitro Compounds; Propionates; Rats; TOR Serine-Threonine Kinases | 2021 |
Ivabradine attenuates the anticonvulsant potency of lamotrigine, but not that of lacosamide, pregabalin and topiramate in the tonic-clonic seizure model in mice.
Topics: Acetamides; Animals; Anticonvulsants; Benzazepines; Brain; Cardiovascular Agents; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Electroshock; Epilepsy, Tonic-Clonic; Fructose; Ivabradine; Lacosamide; Lamotrigine; Male; Mice; Pregabalin; Topiramate; Triazines | 2017 |
Effect of exercise on passive myocardial stiffness in mice with diastolic dysfunction.
Topics: Adaptation, Physiological; Animals; Benzazepines; Biomarkers; Cardiovascular Agents; Connectin; Diastole; Disease Models, Animal; Echocardiography; Gene Expression; Heart Failure; Heart Function Tests; Ivabradine; Male; Mice; Myocardial Contraction; Myocardium; Phosphorylation; Physical Conditioning, Animal | 2017 |
Antiarrhythmic properties of ivabradine in an experimental model of Short-QT- Syndrome.
Topics: Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Benzazepines; Disease Models, Animal; Dose-Response Relationship, Drug; Ivabradine; Refractory Period, Electrophysiological; Ventricular Dysfunction | 2017 |
Hyperpolarization-activated cyclic nucleotide-gated 2 (HCN2) ion channels drive pain in mouse models of diabetic neuropathy.
Topics: Analgesics; Animals; Benzazepines; Cyclic AMP; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diabetic Neuropathies; Disease Models, Animal; Gene Deletion; Hyperalgesia; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels; Ivabradine; Nociception; Pain; Potassium Channels; Proto-Oncogene Proteins c-fos; Sensory Receptor Cells; Skin; Spinal Cord Dorsal Horn; Streptozocin | 2017 |
Differential Effects of HCN Channel Block on On and Off Pathways in the Retina as a Potential Cause for Medication-Induced Phosphene Perception.
Topics: Animals; Benzazepines; Cardiovascular Agents; Cells, Cultured; Disease Models, Animal; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels; Ivabradine; Mice; Mice, Inbred C57BL; Phosphenes; Potassium Channel Blockers; Retina; Retinal Ganglion Cells | 2017 |
Heart rate reduction improves biventricular function and interactions in experimental pulmonary hypertension.
Topics: Adrenergic beta-Antagonists; Animals; Anti-Arrhythmia Agents; Carvedilol; Disease Models, Animal; Drug Therapy, Combination; Heart Rate; Hypertension, Pulmonary; Ivabradine; Male; Monocrotaline; Rats, Sprague-Dawley; Recovery of Function; Time Factors; Ventricular Function, Left; Ventricular Function, Right | 2018 |
Possible Ameliorative Effect of Ivabradine on the Autonomic and Left Ventricular Dysfunction Induced by Doxorubicin in Male Rats.
Topics: Animals; Arterial Pressure; Autonomic Nervous System; Autonomic Nervous System Diseases; Baroreflex; Cardiotoxicity; Cardiovascular Agents; Cardiovascular System; Disease Models, Animal; Doxorubicin; Heart Failure; Heart Rate; Ivabradine; Male; Rats, Wistar; Ventricular Dysfunction, Left; Ventricular Function, Left; Ventricular Pressure | 2018 |
Mechano-chronotropic Unloading During the Acute Phase of Myocardial Infarction Markedly Reduces Infarct Size via the Suppression of Myocardial Oxygen Consumption.
Topics: Animals; Cardiovascular Agents; Combined Modality Therapy; Disease Models, Animal; Dogs; Heart Rate; Heart-Assist Devices; Ivabradine; Myocardial Infarction; Myocardium; Oxygen Consumption; Prosthesis Design; Prosthesis Implantation; Recovery of Function; Ventricular Function, Left | 2019 |
Ivabradine improved left ventricular function and pressure overload-induced cardiomyocyte apoptosis in a transverse aortic constriction mouse model.
Topics: Animals; Aortic Diseases; Apoptosis; Cardiovascular Agents; Constriction, Pathologic; Disease Models, Animal; Hypertrophy, Left Ventricular; Ivabradine; Male; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; Pressure; Ventricular Dysfunction, Left | 2019 |
Ivabradine in acute heart failure: Effects on heart rate and hemodynamic parameters in a randomized and controlled swine trial.
Topics: Acute Disease; Animals; Arterial Pressure; Cardiac Output; Cardiovascular Agents; Disease Models, Animal; Female; Heart Failure; Heart Rate; Ivabradine; Myocardial Infarction; Sus scrofa; Time Factors | 2020 |
The effect of the heart rate lowering drug Ivabradine on hemodynamics in atherosclerotic mice.
Topics: Animals; Atherosclerosis; Cardiovascular Agents; Disease Models, Animal; Heart Rate; Hemodynamics; Ivabradine; Male; Mice; Mice, Inbred C57BL; Mice, Knockout, ApoE; Plaque, Atherosclerotic; Stress, Mechanical | 2018 |
Heart Failure Differentially Modulates the Effects of Ivabradine on the Electrical Activity of the Sinoatrial Node and Pulmonary Veins.
Topics: Action Potentials; Animals; Cardiovascular Agents; Disease Models, Animal; Echocardiography; Electrocardiography, Ambulatory; Heart Failure; Heart Rate; Ivabradine; Male; Pulmonary Veins; Rabbits; Sinoatrial Node; Stroke Volume | 2018 |
Ivabradine promotes angiogenesis and reduces cardiac hypertrophy in mice with myocardial infarction.
Topics: Administration, Oral; Angiogenesis Inducing Agents; Animals; Cardiomegaly; Cardiovascular Agents; Disease Models, Animal; Echocardiography; Electrocardiography; Heart Rate; Ivabradine; Male; Mice; Mice, Inbred C57BL; Myocardial Infarction; Myocardium; Nitric Oxide Synthase Type III; Random Allocation | 2018 |
Modulation of Sympathetic Activity and Innervation With Chronic Ivabradine and β-Blocker Therapies: Analysis of Hypertensive Rats With Heart Failure.
Topics: Adrenergic beta-1 Receptor Antagonists; Animals; Bisoprolol; Cardiovascular Agents; Disease Models, Animal; Heart; Heart Failure; Heart Rate; Hypertension; Ivabradine; Male; Myocardium; Norepinephrine; Parasympathetic Nervous System; Rats, Inbred Dahl; Sodium Chloride, Dietary; Sympathetic Nervous System; Tyrosine 3-Monooxygenase; Ventricular Function, Left | 2019 |
Beneficial Effects of Ivabradine on Post-Resuscitation Myocardial Dysfunction in a Porcine Model of Cardiac Arrest.
Topics: Animals; Cardiomyopathies; Cardiopulmonary Resuscitation; Cardiovascular Agents; Disease Models, Animal; Heart Arrest; Ivabradine; Male; Stroke Volume; Swine; Ventricular Function, Left | 2020 |
Inhibition of I(f) in the atrioventricular node as a mechanism for dronedarone's reduction in ventricular rate during atrial fibrillation.
Topics: Amiodarone; Animals; Atrial Fibrillation; Atrioventricular Node; Benzazepines; Cyclic Nucleotide-Gated Cation Channels; Disease Models, Animal; Dronedarone; Drug Therapy, Combination; Electrocardiography; Heart Rate; Heart Ventricles; Ivabradine; Male; Swine; Ventricular Function, Left | 2013 |
Ivabradine (a hyperpolarization activated cyclic nucleotide-gated channel blocker) elevates the threshold for maximal electroshock-induced tonic seizures in mice.
Topics: Animals; Anticonvulsants; Behavior, Animal; Benzazepines; Brain; Disease Models, Animal; Dose-Response Relationship, Drug; Electroshock; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels; Injections, Intraperitoneal; Ivabradine; Male; Memory; Mice; Motor Activity; Muscle Strength; Seizures | 2013 |
The heart-rate-reducing agent, ivabradine, reduces mechanical allodynia in a rodent model of neuropathic pain.
Topics: Analgesics; Animals; Arterial Pressure; Benzazepines; Disease Models, Animal; Female; Heart Rate; Hyperalgesia; Ivabradine; Male; Neuralgia; Pain Measurement; Pain Threshold; Peripheral Nerve Injuries; Rats; Rats, Sprague-Dawley | 2014 |
If inhibition in the atrioventricular node by ivabradine causes rate-dependent slowing of conduction and reduces ventricular rate during atrial fibrillation.
Topics: Analysis of Variance; Animals; Atrial Fibrillation; Atrioventricular Node; Benzazepines; Cardiac Catheterization; Cardiovascular Agents; Disease Models, Animal; Electrocardiography; Fluoroscopy; Guinea Pigs; Heart Conduction System; Heart Rate; Infusions, Intravenous; Ivabradine; Male; Pulse Therapy, Drug; Random Allocation; Reference Values; Sus scrofa; Swine; Ventricular Function, Left | 2014 |
Cardiac arrhythmia induced by genetic silencing of 'funny' (f) channels is rescued by GIRK4 inactivation.
Topics: Animals; Arrhythmias, Cardiac; Benzazepines; Calcium Signaling; Disease Models, Animal; Female; G Protein-Coupled Inwardly-Rectifying Potassium Channels; Heart Rate; Humans; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels; Ivabradine; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Muscle Proteins; Myocytes, Cardiac; Oocytes; Patch-Clamp Techniques; Potassium Channels; Pregnancy; Xenopus | 2014 |
Ivabradine improves left ventricular function during chronic hypertension in conscious pigs.
Topics: Animals; Benzazepines; Consciousness; Cyclic Nucleotide-Gated Cation Channels; Disease Models, Animal; Female; Heart Ventricles; Hypertension; Ivabradine; Swine; Treatment Outcome; Ventricular Function, Left; Ventricular Remodeling | 2015 |
I(f) current channel inhibitor (ivabradine) deserves cardioprotective effect via down-regulating the expression of matrix metalloproteinase (MMP)-2 and attenuating apoptosis in diabetic mice.
Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Benzazepines; Cardiotonic Agents; Caspase 3; Cells, Cultured; Diabetes Mellitus; Diabetic Cardiomyopathies; Disease Models, Animal; Down-Regulation; Ivabradine; Male; Matrix Metalloproteinase 2; Mice; Myocytes, Cardiac; NF-kappa B; Phosphorylation; Recovery of Function; Signal Transduction; Ventricular Function, Left | 2014 |
Effects of ivabradine on cardiac electrophysiology in dogs with age-related atrial fibrillation.
Topics: Aging; Animals; Anti-Arrhythmia Agents; Atrial Fibrillation; Benzazepines; Cardiac Pacing, Artificial; Disease Models, Animal; Dogs; Drug Evaluation, Preclinical; Female; Heart Atria; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels; Ivabradine; Male; Pulmonary Veins; Refractory Period, Electrophysiological; Sinoatrial Node | 2015 |
Inhibition of Atherosclerosis Progression, Intimal Hyperplasia, and Oxidative Stress by Simvastatin and Ivabradine May Reduce Thoracic Aorta's Stiffness in Hypercholesterolemic Rabbits.
Topics: Animals; Antioxidants; Aorta, Thoracic; Aortic Diseases; Atherosclerosis; Benzazepines; Diet, Atherogenic; Disease Models, Animal; Disease Progression; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypercholesterolemia; Hyperplasia; Ivabradine; Male; Neointima; Oxidative Stress; Plaque, Atherosclerotic; Rabbits; Simvastatin; Vascular Stiffness | 2016 |
Improvement of left ventricular filling by ivabradine during chronic hypertension: involvement of contraction-relaxation coupling.
Topics: Animals; Benzazepines; Cardiovascular Agents; Disease Models, Animal; Female; Hemodynamics; Hypertension; Ivabradine; Swine; Ventricular Function, Left | 2016 |
Heart Rate Reduction With Ivabradine Protects Against Left Ventricular Remodeling by Attenuating Infarct Expansion and Preserving Remote-Zone Contractile Function and Synchrony in a Mouse Model of Reperfused Myocardial Infarction.
Topics: Animals; Benzazepines; Cardiovascular Agents; Disease Models, Animal; Echocardiography; Heart Rate; Heart Ventricles; Ivabradine; Magnetic Resonance Imaging, Cine; Male; Mice; Mice, Inbred C57BL; Myocardial Contraction; Myocardial Infarction; Myocardial Reperfusion Injury; Ventricular Function, Left; Ventricular Remodeling | 2016 |
Ivabradine and metoprolol differentially affect cardiac glucose metabolism despite similar heart rate reduction in a mouse model of dyslipidemia.
Topics: Adrenergic beta-1 Receptor Antagonists; Animals; Benzazepines; Bradycardia; Cardiovascular Agents; Disease Models, Animal; Dyslipidemias; Echocardiography; Energy Metabolism; Female; Glucose; Glycolysis; Heart; Heart Rate; Hemodynamics; Ivabradine; Longitudinal Studies; Male; Metoprolol; Mice; Myocardium; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Stroke Volume; Telemetry; Transcriptome | 2016 |
Ivabradine Attenuates the Microcirculatory Derangements Evoked by Experimental Sepsis.
Topics: Animals; Benzazepines; Cardiovascular Agents; Cricetinae; Disease Models, Animal; Ivabradine; Male; Mesocricetus; Microcirculation; Sepsis | 2017 |
The Effects of Ivabradine on Cardiac Function after Myocardial Infarction are Weaker in Diabetic Rats.
Topics: Animals; Benzazepines; Cardiovascular Agents; Coronary Vessels; Diabetes Mellitus, Experimental; Disease Models, Animal; Echocardiography; Heart Failure; Heart Function Tests; Hyperglycemia; Ivabradine; Ligation; Male; Myocardial Infarction; Nerve Tissue Proteins; Norepinephrine; Rats; Rats, Sprague-Dawley; Signal Transduction; Streptozocin | 2016 |
Pleiotropic action(s) of the bradycardic agent ivabradine: cardiovascular protection beyond heart rate reduction.
Topics: Animals; Atherosclerosis; Benzazepines; Cardiotonic Agents; Disease Models, Animal; Heart Rate; Humans; Ivabradine; Myocardial Infarction; Myocardial Reperfusion Injury; Ventricular Remodeling | 2008 |
Ivabradine induces an increase in ventricular fibrillation threshold during acute myocardial ischemia: an experimental study.
Topics: Action Potentials; Acute Disease; Animals; Anti-Arrhythmia Agents; Benzazepines; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Heart Conduction System; Heart Rate; Ivabradine; Male; Mitochondria, Heart; Myocardial Ischemia; Succinate Dehydrogenase; Sus scrofa; Time Factors; Ventricular Fibrillation; Ventricular Function, Left; Ventricular Pressure | 2008 |
Beneficial effects of delayed ivabradine treatment on cardiac anatomical and electrical remodeling in rat severe chronic heart failure.
Topics: Animals; Anti-Arrhythmia Agents; Benzazepines; Collagen; Disease Models, Animal; Drug Administration Schedule; Echocardiography, Doppler; Electrocardiography, Ambulatory; Fibrosis; Heart Failure; Heart Rate; Ivabradine; Male; Myocardial Infarction; Myocardium; Peptidyl-Dipeptidase A; Rats; Rats, Wistar; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; RNA, Messenger; Severity of Illness Index; Stroke Volume; Telemetry; Ventricular Dysfunction, Left; Ventricular Function, Left; Ventricular Pressure; Ventricular Remodeling | 2009 |
Effect of HCN channel inhibition on retinal morphology and function in normal and dystrophic rodents.
Topics: Actins; Animals; Apoptosis; Benzazepines; Blood Pressure; Blotting, Western; Cyclic Nucleotide-Gated Cation Channels; Disease Models, Animal; Dose-Response Relationship, Drug; Electroretinography; Fluorescent Antibody Technique, Indirect; Glial Fibrillary Acidic Protein; Heart Rate; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels; In Situ Nick-End Labeling; Infusion Pumps; Infusions, Intravenous; Ivabradine; Mice; Mice, Mutant Strains; Microscopy, Confocal; Opsins; Photic Stimulation; Potassium Channels; Rats; Rats, Long-Evans; Retina; Retinitis Pigmentosa | 2010 |
Specific inhibition of HCN channels slows rhythm differently in atria, ventricle and outflow tract and stabilizes conduction in the anoxic-reoxygenated embryonic heart model.
Topics: Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Benzazepines; Biological Clocks; Blotting, Western; Chick Embryo; Cyclic Nucleotide-Gated Cation Channels; Disease Models, Animal; Dose-Response Relationship, Drug; Electrocardiography; Excitation Contraction Coupling; Heart; Heart Atria; Heart Conduction System; Heart Rate; Heart Ventricles; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels; Hypoxia; Ivabradine; Myocardial Contraction; Oxygen; Potassium Channels; Time Factors; Tissue Culture Techniques | 2010 |
Chronic heart rate reduction facilitates cardiomyocyte survival after myocardial infarction.
Topics: Animals; Anti-Arrhythmia Agents; Atenolol; Benzazepines; Bradycardia; Cell Survival; Cicatrix; Coronary Circulation; Diastole; Disease Models, Animal; Heart Rate; Ivabradine; Male; Myocardial Infarction; Myocardium; Myocytes, Cardiac; Rats; Rats, Sprague-Dawley; Recovery of Function; Regeneration; Treatment Outcome | 2010 |
Heart rate reduction with ivabradine improves erectile dysfunction in parallel to decrease in atherosclerotic plaque load in ApoE-knockout mice.
Topics: Animals; Anti-Arrhythmia Agents; Aorta; Apolipoproteins E; Atherosclerosis; Benzazepines; Blood Pressure; Cholesterol, Dietary; Collagen; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelium, Vascular; Fibrosis; Heart Rate; Impotence, Vasculogenic; Ivabradine; Lipids; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Nitric Oxide Synthase Type III; Oxidative Stress; Penile Erection; Penis; Superoxides; Time Factors; Vasodilation; Vasodilator Agents | 2010 |
Heart rate reduction with ivabradine increases ischaemia-induced ventricular fibrillation threshold: role of myocyte structure and myocardial perfusion.
Topics: Animals; Benzazepines; Disease Models, Animal; Dose-Response Relationship, Drug; Heart Conduction System; Heart Rate; Ivabradine; Mitochondria, Heart; Muscle Cells; Myocardial Ischemia; Positron-Emission Tomography; Swine; Ventricular Fibrillation | 2011 |
Heart rate-associated mechanical stress impairs carotid but not cerebral artery compliance in dyslipidemic atherosclerotic mice.
Topics: Animals; Anti-Arrhythmia Agents; Apolipoproteins B; Atherosclerosis; Benzazepines; Carotid Arteries; Carotid Artery Diseases; Cerebral Arteries; Cerebrovascular Disorders; Compliance; Disease Models, Animal; Disease Progression; Dyslipidemias; Endothelium, Vascular; Exercise Therapy; Genotype; Heart Rate; Humans; Ivabradine; Male; Matrix Metalloproteinase 9; Metoprolol; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; Nitric Oxide; Nitric Oxide Synthase Type III; Phenotype; Receptors, LDL; Severity of Illness Index; Stress, Mechanical; Time Factors; Vasodilation | 2011 |
Differential effects of heart rate reduction with ivabradine in two models of endothelial dysfunction and oxidative stress.
Topics: Animals; Apolipoproteins E; Atherosclerosis; Benzazepines; Chromatography, High Pressure Liquid; Disease Models, Animal; Endothelium, Vascular; Heart Rate; Hemodynamics; Humans; Hypertension; Immunoblotting; Ivabradine; Luminescence; Male; Mice; Mice, Knockout; Neutrophils; Oxidative Stress; Rats; Rats, Wistar; Reactive Oxygen Species; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction | 2011 |
Heart rate reduction induced by the if current inhibitor ivabradine improves diastolic function and attenuates cardiac tissue hypoxia.
Topics: Animals; Benzazepines; Cell Hypoxia; Cell Proliferation; Diastole; Disease Models, Animal; Heart Failure; Heart Rate; Hypoxia-Inducible Factor 1, alpha Subunit; Ivabradine; Male; Myocardial Infarction; Nitric Oxide; Rats; Rats, Wistar; Time Factors; Vasodilation; Ventricular Dysfunction, Left; Ventricular Function, Left | 2012 |
Role of heart rate reduction in the prevention of experimental heart failure: comparison between If-channel blockade and β-receptor blockade.
Topics: Adrenergic beta-1 Receptor Antagonists; Angiotensin II; Animals; Apoptosis; Benzazepines; Cyclic Nucleotide-Gated Cation Channels; Cytokines; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Schedule; Heart Failure; Heart Rate; Immunohistochemistry; In Situ Nick-End Labeling; Ivabradine; Male; Metoprolol; Mice; Mice, Inbred C57BL; Multivariate Analysis; Random Allocation; Sensitivity and Specificity; Statistics, Nonparametric; Tachycardia; Treatment Outcome; Ventricular Dysfunction, Left; Ventricular Remodeling | 2012 |
Comparison of effects of ivabradine versus carvedilol in murine model with the Coxsackievirus B3-induced viral myocarditis.
Topics: Adrenergic beta-Antagonists; Animals; Apoptosis; Benzazepines; Carbazoles; Carvedilol; Coxsackievirus Infections; Cytokines; Disease Models, Animal; Enterovirus B, Human; Heart; Heart Rate; Ivabradine; Male; Mice; Myocardial Contraction; Myocarditis; Myocardium; Oxidative Stress; Propanolamines | 2012 |
Ivabradine but not propranolol delays the time to onset of ischaemia-induced ventricular fibrillation by preserving myocardial metabolic energy status.
Topics: Animals; Anti-Arrhythmia Agents; Benzazepines; Cyclic Nucleotide-Gated Cation Channels; Disease Models, Animal; Energy Metabolism; Ivabradine; Male; Myocardial Ischemia; Myocardium; Propranolol; Resuscitation; Swine; Ventricular Fibrillation | 2013 |
Heart rate reduction with ivabradine prevents thyroid hormone-induced cardiac remodeling in rat.
Topics: Animals; Anti-Arrhythmia Agents; Benzazepines; Calcium Signaling; Disease Models, Animal; Fibrosis; Heart Rate; Heart Ventricles; Hyperthyroidism; Ivabradine; Male; Myocardial Contraction; Myocytes, Cardiac; Rats; Rats, Sprague-Dawley; Stroke Volume; Thyroxine; Ultrasonography; Ventricular Dysfunction, Left; Ventricular Function, Left; Ventricular Remodeling | 2013 |
Comparison of a beta-blocker and an If current inhibitor in rabbits with myocardial infarction.
Topics: Adrenergic beta-Antagonists; Animals; Aorta; Benzazepines; Blood Flow Velocity; Cardiotonic Agents; Coronary Circulation; Disease Models, Animal; Electrocardiography; Heart Rate; Heart Ventricles; Ivabradine; Male; Metoprolol; Myocardial Contraction; Myocardial Infarction; Natriuretic Peptide, Brain; Oxygen Consumption; Potassium Channel Blockers; Rabbits; Time Factors; Ventricular Function, Left; Ventricular Myosins | 2006 |
Effect of metoprolol and ivabradine on left ventricular remodelling and Ca2+ handling in the post-infarction rat heart.
Topics: Adrenergic beta-Antagonists; Animals; Benzazepines; Calcium; Disease Models, Animal; Heart Failure; Heart Rate; Hypertrophy, Left Ventricular; Ivabradine; Male; Metoprolol; Myocardial Infarction; Rats; Rats, Wistar; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Sodium-Calcium Exchanger; Ventricular Remodeling | 2008 |