Page last updated: 2024-09-04

ivabradine and Disease Models, Animal

ivabradine has been researched along with Disease Models, Animal in 56 studies

Research

Studies (56)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's5 (8.93)29.6817
2010's40 (71.43)24.3611
2020's11 (19.64)2.80

Authors

AuthorsStudies
Bertero, A; Cain, K; Dupras, S; El-Nachef, D; Futakuchi-Tsuchida, A; Jayabalu, A; Kalucki, FA; Kattman, S; Knollmann, BC; MacLellan, WR; Marchianò, S; Murry, CE; Nakamura, DS; Nakamura, K; Neidig, LE; Pabon, L; Reinecke, H; Robinson, MR; Thies, RS; Tian, R; Tsuchida, H; Weber, GJ; Whittington, D; Yang, X1
Bao, Q; Gong, M; Li, G; Li, Y; Shao, S; Suo, Y; Wang, X; Yang, Q; Yuan, M; Zhang, Y1
Aimoto, M; Kawakami, S; Nagasawa, Y; Takahara, A1
Dostal, C; Ebner, J; Hackl, B; Hilber, K; Kiss, A; Koenig, X; Kubista, H; Marksteiner, J; Podesser, BK; Sauer, J; Szabo, PL; Todt, H1
Adamcova, M; Aziriova, S; Baka, T; Krajcirovicova, K; Paulis, L; Repova, K; Simko, F1
Amstetter, D; Badt, F; Bittner, RE; Ebner, J; Hilber, K; Koenig, X; Rubi, L; Todt, H; Uhrin, P1
Kruszewski, M; Leszek, P; Mackiewicz, U; Mączewski, M; Oknińska, M; Paterek, A; Śmigielski, W; Sochanowicz, B1
Botana, L; Diez-Mata, J; Hernandez, I; Ramirez-Carracedo, R; Sanchez, S; Saura, M; Tesoro, L; Zamorano, JL; Zaragoza, C1
Abdelkader, NF; Ahmed, MAE; Elbadawy, NN; Saad, MA1
Daniluk, J; Drop, B; Sawicka, KM; Szczyrek, M; Szpringer, M; Wawryniuk, A; Załuska, K; Załuska-Patel, K; Żółkowska, D; Łuszczki, JJ1
Granzier, H; Slater, RE; Strom, JG1
Dechering, DG; Eckardt, L; Ellermann, C; Frommeyer, G; Kaese, S; Kochhäuser, S; Lange, PS; Weller, J1
Laínez, S; McNaughton, PA; Mehta, I; Tsantoulas, C; Vilar, B; Wong, S1
Bemme, S; Gollisch, T; Weick, M1
Bijnens, B; Friedberg, MK; Gomez, O; Honjo, O; Ishii, R; Okumura, K; Sun, M1
El-Gowilly, SM; El-Naggar, AE; Sharabi, FM1
Abe, K; Arimura, T; Kamada, K; Kishi, T; Mannoji, H; Nishikawa, T; Saku, K; Sunagawa, G; Sunagawa, K; Tsutsui, H1
Chen, S; Hu, Z; Li, B; Wang, Z; Yu, Y1
Alonso Salinas, GL; Castejón Navarro, B; Cuadrado Berrocal, I; Díez, J; Hernández Navarro, I; Largo Aramburu, C; Osorio Ruiz, Á; Pascual Izco, M; Ramírez-Carracedo, R; Sanmartín, M; Saura Redondo, M; Zamorano, JL; Zaragoza, C1
Evans, PC; Gaalen, KV; Gijsen, FJH; Meester, EJ; Moerman, AM; Ridwan, RY; Van der Heiden, K; van der Steen, AFW; Xing, R1
Chan, CS; Chang, SL; Chen, SA; Chen, YC; Chen, YJ; Kao, YH; Lin, YK1
Chen, S; Wu, X; Wu, Z; Ye, F; You, W1
Akiyama, T; Iwanaga, Y; Kakehi, K; Miyazaki, S; Shimizu, S; Sonobe, T; Watanabe, H; Yamamoto, H1
Chen, L; Hua, T; Yang, M; Yang, Z; Zou, Y1
Belardinelli, L; Kanas, AF; Machado, AD; Nearing, BD; Pagotto, VP; Sobrado, LF; Sobrado, MF; Varone, BB; Verrier, RL; Zeng, D1
Andres-Mach, M; Florek-Łuszczki, M; Luszczki, JJ; Marzęda, E; Prystupa, A1
Bukhanova, N; Chen, Y; Kumar, N; Noh, S; Smith, PA; Stemkowsi, PL1
Batatinha, JA; Belardinelli, L; Bonatti, R; Liu, G; Nearing, BD; Rajamani, S; Silva, AF; Verrier, RL; Zeng, D1
Alig, J; Bidaud, I; Dubel, S; Ehmke, H; Engeland, B; Eschenhagen, T; Fernandez, A; Isbrandt, D; Mangoni, ME; Marger, L; Marquilly, C; Mesirca, P; Miquerol, L; Müller, JC; Nargeot, J; Rollin, A; Seniuk, A; Singh, J; Torrente, AG; Vincent, A; Wickman, K1
Berdeaux, A; Bizé, A; Ghaleh, B; Hittinger, L; Jozwiak, M; Melka, J; Rienzo, M; Sambin, L; Su, JB2
Chen, SL; Hu, ZY; Li, B; Li, MH; Zuo, GF1
Hong, YF; Ji, YT; Jiang, T; Li, JX; Li, YD; Tang, BP; Xing, Q; Xiong, J; Yusufuaji, Y; Zhou, XH1
Alexopoulos, D; Apostolakis, E; Hahalis, G; Koniari, I; Mavrilas, D; Papadaki, H; Papadimitriou, E; Papalois, A; Poimenidi, E; Xanthopoulou, I1
Beyers, RJ; French, BA; Hossack, JA; Lin, D; O'Connor, DM; Piras, BA; Smith, RS1
Bolduc, V; Des Rosiers, C; Lachance, D; Lauzier, B; Rivard, ME; Ruiz, M; Shi, Y; Tardif, JC; Thorin, E; Vaillant, F1
Balarini, MM; Balthazar, DS; Bouskela, E; Miranda, ML; Paes, LS; Santos, MS1
Cao, X; Li, X; Sun, Z; Xia, H; Zhang, B1
Heusch, G2
Belhani, D; Bricca, G; Bui-Xuan, B; Chevalier, P; Descotes, J; Manati, W; Tabib, A; Timour, Q; Vaillant, F1
Delcayre, C; Messaoudi, S; Milliez, P; Nehme, J; Rodriguez, C; Samuel, JL1
Asta, A; Bouly, M; Cervetto, L; Della Santina, L; Demontis, GC; Gargini, C1
Gardier, S; Pedretti, S; Raddatz, E; Sarre, A1
Christensen, LP; Tomanek, RJ; Zhang, RL1
Baumhäkel, M; Böhm, M; Custodis, F; Laufs, U; Schlimmer, N1
Belhani, D; Bui-Xuan, B; Chevalier, P; Dehina, L; Descotes, J; Mazzadi, A; Riera, C; Tabib, A; Timour, Q; Vaillant, F1
Bolduc, V; Des Rosiers, C; Drouin, A; Duquette, N; Frayne-Robillard, I; Gillis, MA; Tardif, JC; Thorin, E; Thorin-Trescases, N1
Daiber, A; Hortmann, M; Kleschyov, AL; Kröller-Schön, S; Münzel, T; Oelze, M; Renné, T; Schulz, E; Torzewski, M; Wenzel, P1
Brakenhielm, E; Debunne, M; Fang, Y; Henry, JP; Lallemand, F; Mulder, P; Richard, V; Thuillez, C; Vercauteren, M1
Becher, PM; Lindner, D; Miteva, K; Savvatis, K; Schmack, B; Schultheiss, HP; Tschöpe, C; Van Linthout, S; Westermann, D; Zietsch, C1
Jia-Feng, L; Li-Sha, G; Na-Dan, Z; Qin, L; Teng, Z; Xue-Qiang, G; Yue-Chun, L1
Bui-Xuan, B; Chevalier, P; Dehina, L; Descotes, J; Dizerens, N; Lauzier, B; Tabib, A; Timour, Q; Vaillant, F1
Cho, KI; Han, J; Kim, BH; Kim, IJ; Kim, JY; Kim, N; Kim, SM1
Brockert, M; Gams, E; Langenbach, MR; Pomblum, VJ; Schepan, M; Schipke, JD; Schmitz-Spanke, S; Zirngibl, H1
Mackiewicz, U; Maczewski, M1

Reviews

1 review(s) available for ivabradine and Disease Models, Animal

ArticleYear
Heart rate and heart failure. Not a simple relationship.
    Circulation journal : official journal of the Japanese Circulation Society, 2011, Volume: 75, Issue:2

    Topics: Animals; Benzazepines; Cardiac Pacing, Artificial; Coronary Artery Disease; Disease Models, Animal; Heart Failure; Heart Rate; Humans; Ivabradine; Models, Cardiovascular; Multicenter Studies as Topic; Myocardial Ischemia; Myocardium; Randomized Controlled Trials as Topic; Stress, Mechanical; Tachycardia; Tachycardia, Supraventricular; Treatment Outcome; Ventricular Dysfunction, Left; Vertebrates

2011

Other Studies

55 other study(ies) available for ivabradine and Disease Models, Animal

ArticleYear
Pharmacologic therapy for engraftment arrhythmia induced by transplantation of human cardiomyocytes.
    Stem cell reports, 2021, 10-12, Volume: 16, Issue:10

    Topics: Amiodarone; Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Cell Line; Cell- and Tissue-Based Therapy; Disease Models, Animal; Drug Combinations; Humans; Ivabradine; Male; Myocardial Infarction; Myocytes, Cardiac; Pluripotent Stem Cells; Stem Cell Transplantation; Swine; Tachycardia

2021
Ivabradine Ameliorates Cardiac Function in Heart Failure with Preserved and Reduced Ejection Fraction via Upregulation of miR-133a.
    Oxidative medicine and cellular longevity, 2021, Volume: 2021

    Topics: Animals; Animals, Newborn; Cardiotonic Agents; Cells, Cultured; Diastole; Disease Models, Animal; Fibroblasts; Heart Failure; Heart Ventricles; Ivabradine; Male; Mice; Mice, Inbred C57BL; MicroRNAs; Rats; Rats, Sprague-Dawley; Signal Transduction; Stroke Volume; Systole; Transfection; Treatment Outcome; Up-Regulation; Ventricular Dysfunction, Left

2021
Torsadogenic Potential of HCN Channel Blocker Ivabradine Assessed in the Rabbit Proarrhythmia Model.
    Biological & pharmaceutical bulletin, 2021, Volume: 44, Issue:11

    Topics: Animals; Atrioventricular Block; Cardiovascular Agents; Disease Models, Animal; Electrocardiography; Heart Rate; Hemodynamics; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels; Ivabradine; Male; Rabbits; Torsades de Pointes

2021
Ivabradine acutely improves cardiac Ca handling and function in a rat model of Duchenne muscular dystrophy.
    Physiological reports, 2023, Volume: 11, Issue:7

    Topics: Animals; Disease Models, Animal; Dystrophin; Ivabradine; Mice; Mice, Inbred mdx; Muscular Dystrophy, Duchenne; Myocytes, Cardiac; Rats

2023
Ivabradine improves survival and attenuates cardiac remodeling in isoproterenol-induced myocardial injury.
    Fundamental & clinical pharmacology, 2021, Volume: 35, Issue:4

    Topics: Animals; Cardiotonic Agents; Disease Models, Animal; Heart Failure; Isoproterenol; Ivabradine; Male; Myocardial Infarction; Rats; Rats, Wistar; Ventricular Function, Left; Ventricular Remodeling

2021
The bradycardic agent ivabradine decreases conduction velocity in the AV node and in the ventricles in-vivo.
    European journal of pharmacology, 2021, Feb-15, Volume: 893

    Topics: Action Potentials; Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Atrioventricular Node; Cardiac Pacing, Artificial; Disease Models, Animal; Electrocardiography; Female; Heart Rate; Ivabradine; Mice, Inbred C57BL; Time Factors

2021
Ivabradine prevents deleterious effects of dopamine therapy in heart failure: No role for HCN4 overexpression.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2021, Volume: 136

    Topics: Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Disease Models, Animal; Dopamine; Female; Heart Failure; Heart Rate; Humans; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels; Ivabradine; Male; Muscle Proteins; Myocardium; Potassium Channels; Rats, Wistar; Ventricular Function, Left; Ventricular Remodeling

2021
Ivabradine Induces Cardiac Protection against Myocardial Infarction by Preventing Cyclophilin-A Secretion in Pigs under Coronary Ischemia/Reperfusion.
    International journal of molecular sciences, 2021, Mar-12, Volume: 22, Issue:6

    Topics: Animals; Basigin; Biomarkers; Cardiotonic Agents; Cyclophilin A; Disease Models, Animal; Gene Expression Regulation; Heart; Humans; Ivabradine; Myocardial Infarction; Swine; Vesicle-Associated Membrane Protein 1

2021
Nano-ivabradine averts behavioral anomalies in Huntington's disease rat model via modulating Rhes/m-tor pathway.
    Progress in neuro-psychopharmacology & biological psychiatry, 2021, 12-20, Volume: 111

    Topics: Animals; Autophagy; Cardiovascular Agents; Corpus Striatum; Disease Models, Animal; Huntington Disease; Ivabradine; Male; Nanoparticle Drug Delivery System; Neuroprotective Agents; Nitro Compounds; Propionates; Rats; TOR Serine-Threonine Kinases

2021
Ivabradine attenuates the anticonvulsant potency of lamotrigine, but not that of lacosamide, pregabalin and topiramate in the tonic-clonic seizure model in mice.
    Epilepsy research, 2017, Volume: 133

    Topics: Acetamides; Animals; Anticonvulsants; Benzazepines; Brain; Cardiovascular Agents; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Electroshock; Epilepsy, Tonic-Clonic; Fructose; Ivabradine; Lacosamide; Lamotrigine; Male; Mice; Pregabalin; Topiramate; Triazines

2017
Effect of exercise on passive myocardial stiffness in mice with diastolic dysfunction.
    Journal of molecular and cellular cardiology, 2017, Volume: 108

    Topics: Adaptation, Physiological; Animals; Benzazepines; Biomarkers; Cardiovascular Agents; Connectin; Diastole; Disease Models, Animal; Echocardiography; Gene Expression; Heart Failure; Heart Function Tests; Ivabradine; Male; Mice; Myocardial Contraction; Myocardium; Phosphorylation; Physical Conditioning, Animal

2017
Antiarrhythmic properties of ivabradine in an experimental model of Short-QT- Syndrome.
    Clinical and experimental pharmacology & physiology, 2017, Volume: 44, Issue:9

    Topics: Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Benzazepines; Disease Models, Animal; Dose-Response Relationship, Drug; Ivabradine; Refractory Period, Electrophysiological; Ventricular Dysfunction

2017
Hyperpolarization-activated cyclic nucleotide-gated 2 (HCN2) ion channels drive pain in mouse models of diabetic neuropathy.
    Science translational medicine, 2017, Sep-27, Volume: 9, Issue:409

    Topics: Analgesics; Animals; Benzazepines; Cyclic AMP; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diabetic Neuropathies; Disease Models, Animal; Gene Deletion; Hyperalgesia; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels; Ivabradine; Nociception; Pain; Potassium Channels; Proto-Oncogene Proteins c-fos; Sensory Receptor Cells; Skin; Spinal Cord Dorsal Horn; Streptozocin

2017
Differential Effects of HCN Channel Block on On and Off Pathways in the Retina as a Potential Cause for Medication-Induced Phosphene Perception.
    Investigative ophthalmology & visual science, 2017, 09-01, Volume: 58, Issue:11

    Topics: Animals; Benzazepines; Cardiovascular Agents; Cells, Cultured; Disease Models, Animal; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels; Ivabradine; Mice; Mice, Inbred C57BL; Phosphenes; Potassium Channel Blockers; Retina; Retinal Ganglion Cells

2017
Heart rate reduction improves biventricular function and interactions in experimental pulmonary hypertension.
    American journal of physiology. Heart and circulatory physiology, 2018, 03-01, Volume: 314, Issue:3

    Topics: Adrenergic beta-Antagonists; Animals; Anti-Arrhythmia Agents; Carvedilol; Disease Models, Animal; Drug Therapy, Combination; Heart Rate; Hypertension, Pulmonary; Ivabradine; Male; Monocrotaline; Rats, Sprague-Dawley; Recovery of Function; Time Factors; Ventricular Function, Left; Ventricular Function, Right

2018
Possible Ameliorative Effect of Ivabradine on the Autonomic and Left Ventricular Dysfunction Induced by Doxorubicin in Male Rats.
    Journal of cardiovascular pharmacology, 2018, Volume: 72, Issue:1

    Topics: Animals; Arterial Pressure; Autonomic Nervous System; Autonomic Nervous System Diseases; Baroreflex; Cardiotoxicity; Cardiovascular Agents; Cardiovascular System; Disease Models, Animal; Doxorubicin; Heart Failure; Heart Rate; Ivabradine; Male; Rats, Wistar; Ventricular Dysfunction, Left; Ventricular Function, Left; Ventricular Pressure

2018
Mechano-chronotropic Unloading During the Acute Phase of Myocardial Infarction Markedly Reduces Infarct Size via the Suppression of Myocardial Oxygen Consumption.
    Journal of cardiovascular translational research, 2019, Volume: 12, Issue:2

    Topics: Animals; Cardiovascular Agents; Combined Modality Therapy; Disease Models, Animal; Dogs; Heart Rate; Heart-Assist Devices; Ivabradine; Myocardial Infarction; Myocardium; Oxygen Consumption; Prosthesis Design; Prosthesis Implantation; Recovery of Function; Ventricular Function, Left

2019
Ivabradine improved left ventricular function and pressure overload-induced cardiomyocyte apoptosis in a transverse aortic constriction mouse model.
    Molecular and cellular biochemistry, 2019, Volume: 450, Issue:1-2

    Topics: Animals; Aortic Diseases; Apoptosis; Cardiovascular Agents; Constriction, Pathologic; Disease Models, Animal; Hypertrophy, Left Ventricular; Ivabradine; Male; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; Pressure; Ventricular Dysfunction, Left

2019
Ivabradine in acute heart failure: Effects on heart rate and hemodynamic parameters in a randomized and controlled swine trial.
    Cardiology journal, 2020, Volume: 27, Issue:1

    Topics: Acute Disease; Animals; Arterial Pressure; Cardiac Output; Cardiovascular Agents; Disease Models, Animal; Female; Heart Failure; Heart Rate; Ivabradine; Myocardial Infarction; Sus scrofa; Time Factors

2020
The effect of the heart rate lowering drug Ivabradine on hemodynamics in atherosclerotic mice.
    Scientific reports, 2018, 09-18, Volume: 8, Issue:1

    Topics: Animals; Atherosclerosis; Cardiovascular Agents; Disease Models, Animal; Heart Rate; Hemodynamics; Ivabradine; Male; Mice; Mice, Inbred C57BL; Mice, Knockout, ApoE; Plaque, Atherosclerotic; Stress, Mechanical

2018
Heart Failure Differentially Modulates the Effects of Ivabradine on the Electrical Activity of the Sinoatrial Node and Pulmonary Veins.
    Journal of cardiac failure, 2018, Volume: 24, Issue:11

    Topics: Action Potentials; Animals; Cardiovascular Agents; Disease Models, Animal; Echocardiography; Electrocardiography, Ambulatory; Heart Failure; Heart Rate; Ivabradine; Male; Pulmonary Veins; Rabbits; Sinoatrial Node; Stroke Volume

2018
Ivabradine promotes angiogenesis and reduces cardiac hypertrophy in mice with myocardial infarction.
    Anatolian journal of cardiology, 2018, Volume: 20, Issue:5

    Topics: Administration, Oral; Angiogenesis Inducing Agents; Animals; Cardiomegaly; Cardiovascular Agents; Disease Models, Animal; Echocardiography; Electrocardiography; Heart Rate; Ivabradine; Male; Mice; Mice, Inbred C57BL; Myocardial Infarction; Myocardium; Nitric Oxide Synthase Type III; Random Allocation

2018
Modulation of Sympathetic Activity and Innervation With Chronic Ivabradine and β-Blocker Therapies: Analysis of Hypertensive Rats With Heart Failure.
    Journal of cardiovascular pharmacology and therapeutics, 2019, Volume: 24, Issue:4

    Topics: Adrenergic beta-1 Receptor Antagonists; Animals; Bisoprolol; Cardiovascular Agents; Disease Models, Animal; Heart; Heart Failure; Heart Rate; Hypertension; Ivabradine; Male; Myocardium; Norepinephrine; Parasympathetic Nervous System; Rats, Inbred Dahl; Sodium Chloride, Dietary; Sympathetic Nervous System; Tyrosine 3-Monooxygenase; Ventricular Function, Left

2019
Beneficial Effects of Ivabradine on Post-Resuscitation Myocardial Dysfunction in a Porcine Model of Cardiac Arrest.
    Shock (Augusta, Ga.), 2020, Volume: 53, Issue:5

    Topics: Animals; Cardiomyopathies; Cardiopulmonary Resuscitation; Cardiovascular Agents; Disease Models, Animal; Heart Arrest; Ivabradine; Male; Stroke Volume; Swine; Ventricular Function, Left

2020
Inhibition of I(f) in the atrioventricular node as a mechanism for dronedarone's reduction in ventricular rate during atrial fibrillation.
    Heart rhythm, 2013, Volume: 10, Issue:11

    Topics: Amiodarone; Animals; Atrial Fibrillation; Atrioventricular Node; Benzazepines; Cyclic Nucleotide-Gated Cation Channels; Disease Models, Animal; Dronedarone; Drug Therapy, Combination; Electrocardiography; Heart Rate; Heart Ventricles; Ivabradine; Male; Swine; Ventricular Function, Left

2013
Ivabradine (a hyperpolarization activated cyclic nucleotide-gated channel blocker) elevates the threshold for maximal electroshock-induced tonic seizures in mice.
    Pharmacological reports : PR, 2013, Volume: 65, Issue:5

    Topics: Animals; Anticonvulsants; Behavior, Animal; Benzazepines; Brain; Disease Models, Animal; Dose-Response Relationship, Drug; Electroshock; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels; Injections, Intraperitoneal; Ivabradine; Male; Memory; Mice; Motor Activity; Muscle Strength; Seizures

2013
The heart-rate-reducing agent, ivabradine, reduces mechanical allodynia in a rodent model of neuropathic pain.
    European journal of pain (London, England), 2014, Volume: 18, Issue:8

    Topics: Analgesics; Animals; Arterial Pressure; Benzazepines; Disease Models, Animal; Female; Heart Rate; Hyperalgesia; Ivabradine; Male; Neuralgia; Pain Measurement; Pain Threshold; Peripheral Nerve Injuries; Rats; Rats, Sprague-Dawley

2014
If inhibition in the atrioventricular node by ivabradine causes rate-dependent slowing of conduction and reduces ventricular rate during atrial fibrillation.
    Heart rhythm, 2014, Volume: 11, Issue:12

    Topics: Analysis of Variance; Animals; Atrial Fibrillation; Atrioventricular Node; Benzazepines; Cardiac Catheterization; Cardiovascular Agents; Disease Models, Animal; Electrocardiography; Fluoroscopy; Guinea Pigs; Heart Conduction System; Heart Rate; Infusions, Intravenous; Ivabradine; Male; Pulse Therapy, Drug; Random Allocation; Reference Values; Sus scrofa; Swine; Ventricular Function, Left

2014
Cardiac arrhythmia induced by genetic silencing of 'funny' (f) channels is rescued by GIRK4 inactivation.
    Nature communications, 2014, Aug-21, Volume: 5

    Topics: Animals; Arrhythmias, Cardiac; Benzazepines; Calcium Signaling; Disease Models, Animal; Female; G Protein-Coupled Inwardly-Rectifying Potassium Channels; Heart Rate; Humans; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels; Ivabradine; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Muscle Proteins; Myocytes, Cardiac; Oocytes; Patch-Clamp Techniques; Potassium Channels; Pregnancy; Xenopus

2014
Ivabradine improves left ventricular function during chronic hypertension in conscious pigs.
    Hypertension (Dallas, Tex. : 1979), 2015, Volume: 65, Issue:1

    Topics: Animals; Benzazepines; Consciousness; Cyclic Nucleotide-Gated Cation Channels; Disease Models, Animal; Female; Heart Ventricles; Hypertension; Ivabradine; Swine; Treatment Outcome; Ventricular Function, Left; Ventricular Remodeling

2015
I(f) current channel inhibitor (ivabradine) deserves cardioprotective effect via down-regulating the expression of matrix metalloproteinase (MMP)-2 and attenuating apoptosis in diabetic mice.
    BMC cardiovascular disorders, 2014, Oct-31, Volume: 14

    Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Benzazepines; Cardiotonic Agents; Caspase 3; Cells, Cultured; Diabetes Mellitus; Diabetic Cardiomyopathies; Disease Models, Animal; Down-Regulation; Ivabradine; Male; Matrix Metalloproteinase 2; Mice; Myocytes, Cardiac; NF-kappa B; Phosphorylation; Recovery of Function; Signal Transduction; Ventricular Function, Left

2014
Effects of ivabradine on cardiac electrophysiology in dogs with age-related atrial fibrillation.
    Medical science monitor : international medical journal of experimental and clinical research, 2015, May-16, Volume: 21

    Topics: Aging; Animals; Anti-Arrhythmia Agents; Atrial Fibrillation; Benzazepines; Cardiac Pacing, Artificial; Disease Models, Animal; Dogs; Drug Evaluation, Preclinical; Female; Heart Atria; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels; Ivabradine; Male; Pulmonary Veins; Refractory Period, Electrophysiological; Sinoatrial Node

2015
Inhibition of Atherosclerosis Progression, Intimal Hyperplasia, and Oxidative Stress by Simvastatin and Ivabradine May Reduce Thoracic Aorta's Stiffness in Hypercholesterolemic Rabbits.
    Journal of cardiovascular pharmacology and therapeutics, 2016, Volume: 21, Issue:4

    Topics: Animals; Antioxidants; Aorta, Thoracic; Aortic Diseases; Atherosclerosis; Benzazepines; Diet, Atherogenic; Disease Models, Animal; Disease Progression; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypercholesterolemia; Hyperplasia; Ivabradine; Male; Neointima; Oxidative Stress; Plaque, Atherosclerotic; Rabbits; Simvastatin; Vascular Stiffness

2016
Improvement of left ventricular filling by ivabradine during chronic hypertension: involvement of contraction-relaxation coupling.
    Basic research in cardiology, 2016, Volume: 111, Issue:3

    Topics: Animals; Benzazepines; Cardiovascular Agents; Disease Models, Animal; Female; Hemodynamics; Hypertension; Ivabradine; Swine; Ventricular Function, Left

2016
Heart Rate Reduction With Ivabradine Protects Against Left Ventricular Remodeling by Attenuating Infarct Expansion and Preserving Remote-Zone Contractile Function and Synchrony in a Mouse Model of Reperfused Myocardial Infarction.
    Journal of the American Heart Association, 2016, 04-22, Volume: 5, Issue:4

    Topics: Animals; Benzazepines; Cardiovascular Agents; Disease Models, Animal; Echocardiography; Heart Rate; Heart Ventricles; Ivabradine; Magnetic Resonance Imaging, Cine; Male; Mice; Mice, Inbred C57BL; Myocardial Contraction; Myocardial Infarction; Myocardial Reperfusion Injury; Ventricular Function, Left; Ventricular Remodeling

2016
Ivabradine and metoprolol differentially affect cardiac glucose metabolism despite similar heart rate reduction in a mouse model of dyslipidemia.
    American journal of physiology. Heart and circulatory physiology, 2016, 10-01, Volume: 311, Issue:4

    Topics: Adrenergic beta-1 Receptor Antagonists; Animals; Benzazepines; Bradycardia; Cardiovascular Agents; Disease Models, Animal; Dyslipidemias; Echocardiography; Energy Metabolism; Female; Glucose; Glycolysis; Heart; Heart Rate; Hemodynamics; Ivabradine; Longitudinal Studies; Male; Metoprolol; Mice; Myocardium; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Stroke Volume; Telemetry; Transcriptome

2016
Ivabradine Attenuates the Microcirculatory Derangements Evoked by Experimental Sepsis.
    Anesthesiology, 2017, Volume: 126, Issue:1

    Topics: Animals; Benzazepines; Cardiovascular Agents; Cricetinae; Disease Models, Animal; Ivabradine; Male; Mesocricetus; Microcirculation; Sepsis

2017
The Effects of Ivabradine on Cardiac Function after Myocardial Infarction are Weaker in Diabetic Rats.
    Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 2016, Volume: 39, Issue:5

    Topics: Animals; Benzazepines; Cardiovascular Agents; Coronary Vessels; Diabetes Mellitus, Experimental; Disease Models, Animal; Echocardiography; Heart Failure; Heart Function Tests; Hyperglycemia; Ivabradine; Ligation; Male; Myocardial Infarction; Nerve Tissue Proteins; Norepinephrine; Rats; Rats, Sprague-Dawley; Signal Transduction; Streptozocin

2016
Pleiotropic action(s) of the bradycardic agent ivabradine: cardiovascular protection beyond heart rate reduction.
    British journal of pharmacology, 2008, Volume: 155, Issue:7

    Topics: Animals; Atherosclerosis; Benzazepines; Cardiotonic Agents; Disease Models, Animal; Heart Rate; Humans; Ivabradine; Myocardial Infarction; Myocardial Reperfusion Injury; Ventricular Remodeling

2008
Ivabradine induces an increase in ventricular fibrillation threshold during acute myocardial ischemia: an experimental study.
    Journal of cardiovascular pharmacology, 2008, Volume: 52, Issue:6

    Topics: Action Potentials; Acute Disease; Animals; Anti-Arrhythmia Agents; Benzazepines; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Heart Conduction System; Heart Rate; Ivabradine; Male; Mitochondria, Heart; Myocardial Ischemia; Succinate Dehydrogenase; Sus scrofa; Time Factors; Ventricular Fibrillation; Ventricular Function, Left; Ventricular Pressure

2008
Beneficial effects of delayed ivabradine treatment on cardiac anatomical and electrical remodeling in rat severe chronic heart failure.
    American journal of physiology. Heart and circulatory physiology, 2009, Volume: 296, Issue:2

    Topics: Animals; Anti-Arrhythmia Agents; Benzazepines; Collagen; Disease Models, Animal; Drug Administration Schedule; Echocardiography, Doppler; Electrocardiography, Ambulatory; Fibrosis; Heart Failure; Heart Rate; Ivabradine; Male; Myocardial Infarction; Myocardium; Peptidyl-Dipeptidase A; Rats; Rats, Wistar; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; RNA, Messenger; Severity of Illness Index; Stroke Volume; Telemetry; Ventricular Dysfunction, Left; Ventricular Function, Left; Ventricular Pressure; Ventricular Remodeling

2009
Effect of HCN channel inhibition on retinal morphology and function in normal and dystrophic rodents.
    Investigative ophthalmology & visual science, 2010, Volume: 51, Issue:2

    Topics: Actins; Animals; Apoptosis; Benzazepines; Blood Pressure; Blotting, Western; Cyclic Nucleotide-Gated Cation Channels; Disease Models, Animal; Dose-Response Relationship, Drug; Electroretinography; Fluorescent Antibody Technique, Indirect; Glial Fibrillary Acidic Protein; Heart Rate; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels; In Situ Nick-End Labeling; Infusion Pumps; Infusions, Intravenous; Ivabradine; Mice; Mice, Mutant Strains; Microscopy, Confocal; Opsins; Photic Stimulation; Potassium Channels; Rats; Rats, Long-Evans; Retina; Retinitis Pigmentosa

2010
Specific inhibition of HCN channels slows rhythm differently in atria, ventricle and outflow tract and stabilizes conduction in the anoxic-reoxygenated embryonic heart model.
    Pharmacological research, 2010, Volume: 61, Issue:1

    Topics: Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Benzazepines; Biological Clocks; Blotting, Western; Chick Embryo; Cyclic Nucleotide-Gated Cation Channels; Disease Models, Animal; Dose-Response Relationship, Drug; Electrocardiography; Excitation Contraction Coupling; Heart; Heart Atria; Heart Conduction System; Heart Rate; Heart Ventricles; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels; Hypoxia; Ivabradine; Myocardial Contraction; Oxygen; Potassium Channels; Time Factors; Tissue Culture Techniques

2010
Chronic heart rate reduction facilitates cardiomyocyte survival after myocardial infarction.
    Anatomical record (Hoboken, N.J. : 2007), 2010, Volume: 293, Issue:5

    Topics: Animals; Anti-Arrhythmia Agents; Atenolol; Benzazepines; Bradycardia; Cell Survival; Cicatrix; Coronary Circulation; Diastole; Disease Models, Animal; Heart Rate; Ivabradine; Male; Myocardial Infarction; Myocardium; Myocytes, Cardiac; Rats; Rats, Sprague-Dawley; Recovery of Function; Regeneration; Treatment Outcome

2010
Heart rate reduction with ivabradine improves erectile dysfunction in parallel to decrease in atherosclerotic plaque load in ApoE-knockout mice.
    Atherosclerosis, 2010, Volume: 212, Issue:1

    Topics: Animals; Anti-Arrhythmia Agents; Aorta; Apolipoproteins E; Atherosclerosis; Benzazepines; Blood Pressure; Cholesterol, Dietary; Collagen; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelium, Vascular; Fibrosis; Heart Rate; Impotence, Vasculogenic; Ivabradine; Lipids; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Nitric Oxide Synthase Type III; Oxidative Stress; Penile Erection; Penis; Superoxides; Time Factors; Vasodilation; Vasodilator Agents

2010
Heart rate reduction with ivabradine increases ischaemia-induced ventricular fibrillation threshold: role of myocyte structure and myocardial perfusion.
    Resuscitation, 2011, Volume: 82, Issue:8

    Topics: Animals; Benzazepines; Disease Models, Animal; Dose-Response Relationship, Drug; Heart Conduction System; Heart Rate; Ivabradine; Mitochondria, Heart; Muscle Cells; Myocardial Ischemia; Positron-Emission Tomography; Swine; Ventricular Fibrillation

2011
Heart rate-associated mechanical stress impairs carotid but not cerebral artery compliance in dyslipidemic atherosclerotic mice.
    American journal of physiology. Heart and circulatory physiology, 2011, Volume: 301, Issue:5

    Topics: Animals; Anti-Arrhythmia Agents; Apolipoproteins B; Atherosclerosis; Benzazepines; Carotid Arteries; Carotid Artery Diseases; Cerebral Arteries; Cerebrovascular Disorders; Compliance; Disease Models, Animal; Disease Progression; Dyslipidemias; Endothelium, Vascular; Exercise Therapy; Genotype; Heart Rate; Humans; Ivabradine; Male; Matrix Metalloproteinase 9; Metoprolol; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; Nitric Oxide; Nitric Oxide Synthase Type III; Phenotype; Receptors, LDL; Severity of Illness Index; Stress, Mechanical; Time Factors; Vasodilation

2011
Differential effects of heart rate reduction with ivabradine in two models of endothelial dysfunction and oxidative stress.
    Basic research in cardiology, 2011, Volume: 106, Issue:6

    Topics: Animals; Apolipoproteins E; Atherosclerosis; Benzazepines; Chromatography, High Pressure Liquid; Disease Models, Animal; Endothelium, Vascular; Heart Rate; Hemodynamics; Humans; Hypertension; Immunoblotting; Ivabradine; Luminescence; Male; Mice; Mice, Knockout; Neutrophils; Oxidative Stress; Rats; Rats, Wistar; Reactive Oxygen Species; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction

2011
Heart rate reduction induced by the if current inhibitor ivabradine improves diastolic function and attenuates cardiac tissue hypoxia.
    Journal of cardiovascular pharmacology, 2012, Volume: 59, Issue:3

    Topics: Animals; Benzazepines; Cell Hypoxia; Cell Proliferation; Diastole; Disease Models, Animal; Heart Failure; Heart Rate; Hypoxia-Inducible Factor 1, alpha Subunit; Ivabradine; Male; Myocardial Infarction; Nitric Oxide; Rats; Rats, Wistar; Time Factors; Vasodilation; Ventricular Dysfunction, Left; Ventricular Function, Left

2012
Role of heart rate reduction in the prevention of experimental heart failure: comparison between If-channel blockade and β-receptor blockade.
    Hypertension (Dallas, Tex. : 1979), 2012, Volume: 59, Issue:5

    Topics: Adrenergic beta-1 Receptor Antagonists; Angiotensin II; Animals; Apoptosis; Benzazepines; Cyclic Nucleotide-Gated Cation Channels; Cytokines; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Schedule; Heart Failure; Heart Rate; Immunohistochemistry; In Situ Nick-End Labeling; Ivabradine; Male; Metoprolol; Mice; Mice, Inbred C57BL; Multivariate Analysis; Random Allocation; Sensitivity and Specificity; Statistics, Nonparametric; Tachycardia; Treatment Outcome; Ventricular Dysfunction, Left; Ventricular Remodeling

2012
Comparison of effects of ivabradine versus carvedilol in murine model with the Coxsackievirus B3-induced viral myocarditis.
    PloS one, 2012, Volume: 7, Issue:6

    Topics: Adrenergic beta-Antagonists; Animals; Apoptosis; Benzazepines; Carbazoles; Carvedilol; Coxsackievirus Infections; Cytokines; Disease Models, Animal; Enterovirus B, Human; Heart; Heart Rate; Ivabradine; Male; Mice; Myocardial Contraction; Myocarditis; Myocardium; Oxidative Stress; Propanolamines

2012
Ivabradine but not propranolol delays the time to onset of ischaemia-induced ventricular fibrillation by preserving myocardial metabolic energy status.
    Resuscitation, 2013, Volume: 84, Issue:3

    Topics: Animals; Anti-Arrhythmia Agents; Benzazepines; Cyclic Nucleotide-Gated Cation Channels; Disease Models, Animal; Energy Metabolism; Ivabradine; Male; Myocardial Ischemia; Myocardium; Propranolol; Resuscitation; Swine; Ventricular Fibrillation

2013
Heart rate reduction with ivabradine prevents thyroid hormone-induced cardiac remodeling in rat.
    Heart and vessels, 2013, Volume: 28, Issue:4

    Topics: Animals; Anti-Arrhythmia Agents; Benzazepines; Calcium Signaling; Disease Models, Animal; Fibrosis; Heart Rate; Heart Ventricles; Hyperthyroidism; Ivabradine; Male; Myocardial Contraction; Myocytes, Cardiac; Rats; Rats, Sprague-Dawley; Stroke Volume; Thyroxine; Ultrasonography; Ventricular Dysfunction, Left; Ventricular Function, Left; Ventricular Remodeling

2013
Comparison of a beta-blocker and an If current inhibitor in rabbits with myocardial infarction.
    The Journal of cardiovascular surgery, 2006, Volume: 47, Issue:6

    Topics: Adrenergic beta-Antagonists; Animals; Aorta; Benzazepines; Blood Flow Velocity; Cardiotonic Agents; Coronary Circulation; Disease Models, Animal; Electrocardiography; Heart Rate; Heart Ventricles; Ivabradine; Male; Metoprolol; Myocardial Contraction; Myocardial Infarction; Natriuretic Peptide, Brain; Oxygen Consumption; Potassium Channel Blockers; Rabbits; Time Factors; Ventricular Function, Left; Ventricular Myosins

2006
Effect of metoprolol and ivabradine on left ventricular remodelling and Ca2+ handling in the post-infarction rat heart.
    Cardiovascular research, 2008, Jul-01, Volume: 79, Issue:1

    Topics: Adrenergic beta-Antagonists; Animals; Benzazepines; Calcium; Disease Models, Animal; Heart Failure; Heart Rate; Hypertrophy, Left Ventricular; Ivabradine; Male; Metoprolol; Myocardial Infarction; Rats; Rats, Wistar; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Sodium-Calcium Exchanger; Ventricular Remodeling

2008