iturelix and Infertility--Male

iturelix has been researched along with Infertility--Male* in 2 studies

Other Studies

2 other study(ies) available for iturelix and Infertility--Male

ArticleYear
GnRH Neuron-Specific Ablation of Gαq/11 Results in Only Partial Inactivation of the Neuroendocrine-Reproductive Axis in Both Male and Female Mice: In Vivo Evidence for Kiss1r-Coupled Gαq/11-Independent GnRH Secretion.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2015, Sep-16, Volume: 35, Issue:37

    The gonadotropin-releasing hormone (GnRH) is the master regulator of fertility and kisspeptin (KP) is a potent trigger of GnRH secretion from GnRH neurons. KP signals via KISS1R, a Gαq/11-coupled receptor, and mice bearing a global deletion of Kiss1r (Kiss1r(-/-)) or a GnRH neuron-specific deletion of Kiss1r (Kiss1r(d/d)) display hypogonadotropic hypogonadism and infertility. KISS1R also signals via β-arrestin, and in mice lacking β-arrestin-1 or -2, KP-triggered GnRH secretion is significantly diminished. Based on these findings, we hypothesized that ablation of Gαq/11 in GnRH neurons would diminish but not completely block KP-triggered GnRH secretion and that Gαq/11-independent GnRH secretion would be sufficient to maintain fertility. To test this, Gnaq (encodes Gαq) was selectively inactivated in the GnRH neurons of global Gna11 (encodes Gα11)-null mice by crossing Gnrh-Cre and Gnaq(fl/fl);Gna11(-/-) mice. Experimental Gnaq(fl/fl);Gna11(-/-);Gnrh-Cre (Gnaq(d/d)) and control Gnaq(fl/fl);Gna11(-/-) (Gnaq(fl/fl)) littermate mice were generated and subjected to reproductive profiling. This process revealed that testicular development and spermatogenesis, preputial separation, and anogenital distance in males and day of vaginal opening and of first estrus in females were significantly less affected in Gnaq(d/d) mice than in previously characterized Kiss1r(-/-) or Kiss1r(d/d) mice. Additionally, Gnaq(d/d) males were subfertile, and although Gnaq(d/d) females did not ovulate spontaneously, they responded efficiently to a single dose of gonadotropins. Finally, KP stimulation triggered a significant increase in gonadotropins and testosterone levels in Gnaq(d/d) mice. We therefore conclude that the milder reproductive phenotypes and maintained responsiveness to KP and gonadotropins reflect Gαq/11-independent GnRH secretion and activation of the neuroendocrine-reproductive axis in Gnaq(d/d) mice.. The gonadotropin-releasing hormone (GnRH) is the master regulator of fertility. Over the last decade, several studies have established that the KISS1 receptor, KISS1R, is a potent trigger of GnRH secretion and inactivation of KISS1R on the GnRH neuron results in infertility. While KISS1R is best understood as a Gαq/11-coupled receptor, we previously demonstrated that it could couple to and signal via non-Gαq/11-coupled pathways. The present study confirms these findings and, more importantly, while it establishes Gαq/11-coupled signaling as a major conduit of GnRH secretion, it also uncovers a significant role for non-Gαq/11-coupled signaling in potentiating reproductive development and function. This study further suggests that by augmenting signaling via these pathways, GnRH secretion can be enhanced to treat some forms of infertility.

    Topics: Animals; Blastocyst; Embryonic Development; Female; Gene Expression Profiling; Genitalia, Female; Genitalia, Male; Gonadal Steroid Hormones; Gonadotropin-Releasing Hormone; Gonadotropins, Pituitary; GTP-Binding Protein alpha Subunits; Hypogonadism; Hypothalamo-Hypophyseal System; Hypothalamus; Infertility, Female; Infertility, Male; Kisspeptins; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Neurons; Oligopeptides; Ovariectomy; Ovulation; Peptide Fragments; Peptides; Phenotype; Receptors, G-Protein-Coupled; Receptors, Kisspeptin-1; Spermatogenesis

2015
Exposure of neonatal rats to anti-androgens induces penile mal-developments and infertility comparable to those induced by oestrogens.
    International journal of andrology, 2012, Volume: 35, Issue:3

    We previously reported that oestrogen exposure in neonatal rats induced permanent infertility and malformed penis characterized by fat accumulation, which replaced most of the smooth muscle cells and cavernous spaces in the body of the penis, structures essential for erection. The objective of this study was to determine if reduced androgen production/action in the neonatal period, in the absence of exogenous oestrogen exposure, induces penile deformities similar to those caused by oestrogen. Male rats were treated from postnatal days 1-6 with GnRH antagonist antide (A, 10 mg/kg) or androgen receptor (AR) antagonist flutamide (F, 50 mg/kg) or F + A, with or without AR agonist dihydrotestosterone (DHT, 20 mg/kg). For comparison, pups received diethylstilbestrol (DES, 0.1 mg/kg), with or without DHT. Tissues were collected at ages 7 and 12 days and at adulthood. Flutamide alone decreased penile length and weight significantly (p < 0.05), but it caused neither fat accumulation, nor affected fertility (80% vs. 87% in controls). Antide alone reduced penile length and weight significantly, and induced fat accumulation in 4/11 rats and infertility in 13/14 rats. Conversely, all 11 F + A-treated rats, similar to all nine DES-treated rats, had fat accumulation and loss of smooth muscle cells and cavernous spaces in the body of the penis and were infertile. In addition, reductions in penile length and weight were higher than in rats treated with F or A alone. DHT co-administration mitigated penile deformities in the DES group, but did not in the F + A group. Testicular testosterone was reduced by 70-95% at 7 or 12 days of age in all treated groups, except in the F group, which had threefold higher testosterone than controls. Collectively, data unequivocally show that reduced androgen production/action in the neonatal period, in the absence of oestrogen exposure, induces permanent infertility and malformed penis similar to that caused by oestrogen.

    Topics: Androgen Antagonists; Androgen Receptor Antagonists; Animals; Animals, Newborn; Diethylstilbestrol; Dihydrotestosterone; Estrogens; Female; Gonadotropin-Releasing Hormone; Infertility, Male; Male; Oligopeptides; Penis; Rats; Rats, Sprague-Dawley; Testosterone

2012