istradefylline has been researched along with Parkinsonian-Disorders* in 14 studies
2 review(s) available for istradefylline and Parkinsonian-Disorders
Article | Year |
---|---|
Progress in pursuit of therapeutic A2A antagonists: the adenosine A2A receptor selective antagonist KW6002: research and development toward a novel nondopaminergic therapy for Parkinson's disease.
Research and development of the adenosine A2A receptor selective antagonist KW6002 have focused on developing a novel nondopaminergic therapy for Parkinson's disease (PD). Salient pharmacologic features of KW6002 were investigated in several animal models of PD. In rodent and primate models, KW6002 provides symptomatic relief from parkinsonian motor deficits without provoking dyskinesia or exacerbating existing dyskinesias. The major target neurons of the A2A receptor antagonist were identified as GABAergic striatopallidal medium spiny neurons. A possible mechanism of A2A receptor antagonist action in PD has been proposed based on the involvement of striatal and pallidal presynaptic A2A receptors in the "dual" modulation of GABAergic synaptic transmission. Experiments with dopamine D2 receptor knockout mice showed that A2A receptors can function and anti-PD activities of A2A antagonists can occur independent of the dopaminergic system. Clinical studies of KW6002 in patients with advanced PD with L-dopa-related motor complications yielded promising results with regard to motor symptom relief without motor side effects. The development of KW6002 represents the first time that a concept gleaned from A2A biologic research has been applied successfully to "proof of concept" clinical studies. The selective A2A antagonist should provide a novel nondopaminergic approach to PD therapy. Topics: Adenosine A2 Receptor Antagonists; Animals; Antiparkinson Agents; Clinical Trials as Topic; Corpus Striatum; Disease Models, Animal; Drug Evaluation, Preclinical; Dyskinesia, Drug-Induced; gamma-Aminobutyric Acid; Globus Pallidus; Humans; Levodopa; Mice; Mice, Knockout; Motor Activity; Neurons; Oxidopamine; Parkinson Disease; Parkinsonian Disorders; Primates; Purines; Rats; Receptor, Adenosine A2A; Receptors, Dopamine D2 | 2003 |
Translating A2A antagonist KW6002 from animal models to parkinsonian patients.
Improving the translation of novel findings from basic laboratory research to better therapies for neurologic disease constitutes a major challenge for the neurosciences. This brief review of aspects of the development of an adenosine A2A antagonist for use in the management of Parkinson's disease (PD) illustrates approaches to some of the relevant issues. Adenosine A2A receptors, highly expressed on striatal medium spiny neurons, signal via kinases whose aberrant activation has been linked to the appearance of parkinsonian signs after dopaminergic denervation and to the motor response complications produced by dopaminomimetic therapy. To assess the ability of A2A receptor blockade to normalize certain of these kinases and thus benefit motor dysfunction, the palliative and prophylactic effects of the selective antagonist KW6002 were first evaluated in rodent and primate models. In hemiparkinsonian rats, KW6002 reversed the intermittent L-dopa treatment-induced, protein kinase A-mediated hyperphosphorylation of striatal alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid receptor GluR1 S845 residues and the concomitant shortening in motor response duration. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys, coadministration of KW6002 with daily apomorphine injections acted prophylactically to prevent dyskinesia onset. These and related preclinical observations guided the design of a limited, randomized, controlled, proof-of-concept study of the A2A antagonist in patients with moderately advanced PD. Although KW6002 alone or in combination with a steady-state IV infusion of optimal-dose L-dopa had no effect on parkinsonian severity, the drug potentiated the antiparkinsonian response to low-dose L-dopa with fewer dyskinesias than produced by optimal-dose L-dopa alone. KW6002 also safely prolonged the efficacy half-time of L-dopa. The results suggest that drugs capable of selectively blocking adenosine A2A receptors could confer therapeutic benefit to L-dopa-treated parkinsonian patients and warrant further evaluation in phase II studies. They also illustrate a strategy for successfully bridging a novel approach to PD therapy from an evolving research concept to pivotal clinical trials. Topics: Adenosine A2 Receptor Antagonists; Animals; Antiparkinson Agents; Clinical Trials as Topic; Corpus Striatum; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Drug Synergism; Humans; Levodopa; Macaca fascicularis; Male; Motor Activity; Neurons; Parkinsonian Disorders; Purines; Rats; Rats, Sprague-Dawley; Receptors, AMPA | 2003 |
12 other study(ies) available for istradefylline and Parkinsonian-Disorders
Article | Year |
---|---|
Adenosine A₂A-receptor antagonist istradefylline enhances the motor response of L-DOPA without worsening dyskinesia in MPTP-treated common marmosets.
The adenosine A₂A-receptor antagonist istradefylline decreases OFF time in patients with Parkinson's disease who are already treated with optimal doses of dopaminergic medication but can cause an increase in non-troublesome dyskinesia. Preclinical experiments have shown that A₂A antagonists are most effective in potentiating motor function when combined with sub-maximal doses of L-DOPA. However, the effects of combining istradefylline with sub-optimal L-DOPA treatment on established dyskinesia have not been studied. We now examine the effects of acute and repeated administration of istradefylline on dyskinesia in MPTP-treated common marmosets previously primed to exhibit involuntary movements by prior exposure to L-DOPA. In these animals, single dose acute oral administration of istradefylline (10 mg/kg) enhanced and prolonged the anti-parkinsonian effects of a sub-optimal dose of L-DOPA (2.5 mg/kg). The chronic co-administration of istradefylline (10 mg/kg) with L-DOPA (2.5 mg/kg) for 21 days did not worsen the severity of existing dyskinesia. Rather, the severity of dyskinesia tended to be reduced over the 21-day treatment period. These results suggest that istradefylline can be used to potentiate the effects of sub-optimal doses of L-DOPA in the treatment of Parkinson's disease without causing or worsening dyskinesia. Topics: Adenosine A2 Receptor Antagonists; Administration, Oral; Animals; Antiparkinson Agents; Callithrix; Drug Synergism; Dyskinesias; Female; Levodopa; Male; Motor Activity; Parkinsonian Disorders; Purines | 2014 |
An improved model to investigate the efficacy of antidyskinetic agents in hemiparkinsonian rats.
A number of experimental models of L-DOPA-induced dyskinesia have been proposed, but these models result in a low to medium rate of dyskinetic animals with mild to severe symptoms. The objective of this study was to combine a model of 6-OHDA-induced parkinsonism and of L-DOPA-induced dyskinesia in rats to establish a reliable preclinical model. Two stereotaxic injections of 6-OHDA were administered in the left striatum. This model led to 90-100% of rats with a marked contralateral circling behaviour, significant limb use asymmetry (20%), a decrease in ipsilateral striatal dopamine content (70%) and degeneration of dopamine neurons in the substantia nigra (70%). Chronic treatment with L-DOPA was administered for 35 days and consisted of three phases with incremental daily doses. The third phase resulted in 83-90% of rats developing severe abnormal involuntary movements (AIMs) which included limb and locomotive dyskinesia, axial dystonia and orolingual dyskinesia. Reproducibility of the model, criteria of strict blinding, placebo-controlled design, randomization of study subjects and pretrial determination of sample size were used to measure efficacy of amantadine and istradefylline and to validate the protocol design. Acute or subchronic post-treatment with amantadine reduced the severity of dyskinesia while istradefylline punctually attenuated AIMs. Our experimental conditions using gradual development of dyskinesia induced by increasing doses of L-DOPA resulted in a reliable model of L-DOPA-induced dyskinesia with a high rate of dyskinetic rats. Topics: Adenosine A2 Receptor Antagonists; Amantadine; Animals; Antiparkinson Agents; Behavior, Animal; Benserazide; Biological Assay; Corpus Striatum; Disease Models, Animal; Dopamine; Dopamine Agents; Drug Administration Schedule; Drug Evaluation, Preclinical; Dyskinesia, Drug-Induced; Enzyme Inhibitors; Levodopa; Male; Oxidopamine; Parkinsonian Disorders; Placebos; Purines; Random Allocation; Rats; Reproducibility of Results; Rotation; Sample Size; Single-Blind Method; Sympatholytics | 2011 |
Forebrain adenosine A2A receptors contribute to L-3,4-dihydroxyphenylalanine-induced dyskinesia in hemiparkinsonian mice.
Adenosine A2A receptor antagonists provide a promising nondopaminergic approach to the treatment of Parkinson's disease (PD). Initial clinical trials of A2A antagonists targeted PD patients who had already developed treatment complications known as L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) in an effort to improve symptoms while reducing existing LID. The goal of this study is to explore the effect of A2A antagonists and targeted A2A receptor depletion on the actual development of sensitized responses to L-DOPA in mouse models of LID in PD. Hemiparkinsonian mice (unilaterally lesioned with 6-OHDA) were treated daily for 3 weeks with a low dose of L-DOPA (2 mg/kg) preceded by a low dose of selective A2A antagonist (KW-6002 [(E)-1,3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione] at 0.03 or 0.3 mg/kg, or SCH58261 [5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine] at 0.03 mg/kg) or vehicle intraperitoneally. In control mice, contralateral rotational responses to daily L-DOPA gradually increased over the initial week before reaching a persistent maximum. Both A2A antagonists inhibited the development of sensitized contralateral turning, with KW-6002 pretreatment reducing the sensitized rotational responses by up to threefold. The development of abnormal involuntary movements (a measure of LID) as well as rotational responses was attenuated by the postnatal depletion of forebrain A2A receptors in conditional (Cre/loxP system) knock-out mice. These pharmacological and genetic data provide evidence that striatal A2A receptors play an important role in the neuroplasticity underlying behavioral sensitization to L-DOPA, supporting consideration of early adjunctive therapy with an A2A antagonist to reduce the risk of LID in PD. Topics: Adenosine A2 Receptor Antagonists; Animals; Dyskinesia, Drug-Induced; Levodopa; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Oxidopamine; Parkinsonian Disorders; Prosencephalon; Purines; Receptor, Adenosine A2A | 2006 |
Pharmacological validation of a mouse model of l-DOPA-induced dyskinesia.
Dyskinesia (abnormal involuntary movements) is a common complication of l-DOPA pharmacotherapy in Parkinson's disease, and is thought to depend on abnormal cell signaling in the basal ganglia. Dopamine (DA) denervated mice can exhibit behavioral and cellular signs of dyskinesia when they are treated with l-DOPA, but the clinical relevance of this animal model remains to be established. In this study, we have examined the pharmacological profile of l-DOPA-induced abnormal involuntary movements (AIMs) in the mouse. C57BL/6 mice sustained unilateral injections of 6-hydroxydopamine (6-OHDA) in the striatum. The animals were treated chronically with daily doses of l-DOPA that were sufficient to ameliorate akinetic features without inducing overt signs of dyskinesia upon their first administration. In parallel, other groups of mice were treated with antiparkinsonian agents that do not induce dyskinesia when administered de novo, that is, the D2/D3 agonist ropinirole, and the adenosine A2a antagonist KW-6002. During 3 weeks of treatment, l-DOPA-treated mice developed AIMs affecting the head, trunk and forelimb on the side contralateral to the lesion. These movements were not expressed by animals treated with ropinirole or KW-6002 at doses that improved forelimb akinesia. The severity of l-DOPA-induced rodent AIMs was significantly reduced by the acute administration of compounds that have been shown to alleviate l-DOPA-induced dyskinesia both in parkinsonian patients and in rat and monkey models of Parkinson's disease (amantadine, -47%; buspirone, -46%; riluzole, -33%). The present data indicate that the mouse AIMs are indeed a functional equivalent of l-DOPA-induced dyskinesia. Topics: Adenosine A2 Receptor Agonists; Adrenergic Agents; Amantadine; Animals; Antiparkinson Agents; Basal Ganglia; Buspirone; Disease Models, Animal; Disease Progression; Dopamine Agonists; Drug Administration Schedule; Dyskinesia, Drug-Induced; Indoles; Levodopa; Male; Mice; Mice, Inbred C57BL; Oxidopamine; Parkinsonian Disorders; Purines; Receptor, Adenosine A2A; Receptors, Dopamine D2; Reproducibility of Results; Riluzole; Treatment Outcome | 2005 |
Adenosine A(2A) receptor-mediated modulation of GABA and glutamate release in the output regions of the basal ganglia in a rodent model of Parkinson's disease.
A target neuron of adenosine A(2A) receptor antagonists to exert anti-parkinsonian activities has been currently identified to be, at least in part, striatopallidal medium spiny neurons (MSNs). In the present study, we determine whether A(2A) receptor-mediated modulation is associated with changes in the release of GABA and glutamate in the substantia nigra pars reticulata (SNr), an output structure of the whole basal ganglia network, using in vivo microdialysis in a rat Parkinson's disease (PD) model. In 6-hydroxydopamine (OHDA)-lesioned rats compared with normal rats, basal extracellular GABA levels in the SNr show no change, whereas basal glutamate levels are significantly increased. Oral administration of the A(2A) receptor-selective antagonist (E-1,3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1-H-purine-2,6-dion (KW-6002) to 6-OHDA-lesioned rats at 1 mg/kg caused a marked and sustained increase of GABA and glutamate levels in the SNr. The increase of nigral glutamate by KW-6002 was abolished by a kainic acid-induced lesion of the globus pallidus (GP) or subthalamic nucleus (STN) in 6-OHDA-lesioned rats, whereas the increase of nigral GABA was completely blocked by the GP-lesion but only partially blocked by the STN-lesion. These results indicate that changes in neurotransmitter release in the SNr brought about by KW-6002 are largely attributable to blockade of A(2A) receptor-mediated modulation of striatopallidal MSNs. Thus, these actions of KW-6002 on striatopallidal MSNs may be the main mechanism for ameliorating PD by A(2A) antagonists. Topics: Adenosine A2 Receptor Antagonists; Animals; Basal Ganglia; Denervation; Disease Models, Animal; Efferent Pathways; Extracellular Fluid; gamma-Aminobutyric Acid; Globus Pallidus; Glutamic Acid; Male; Models, Neurological; Neostriatum; Neurons; Oxidopamine; Parkinsonian Disorders; Purines; Rats; Rats, Sprague-Dawley; Receptor, Adenosine A2A; Substantia Nigra | 2004 |
Cellular and behavioural effects of the adenosine A2a receptor antagonist KW-6002 in a rat model of l-DOPA-induced dyskinesia.
We have examined the ability of KW-6002, an adenosine A2a antagonist, to modulate the dyskinetic effects of L-DOPA in 6-hydroxydopamine-lesioned rats. In animals rendered dyskinetic by a previous course of L-DOPA treatment, KW-6002 did not elicit any abnormal involuntary movements on its own, but failed to reduce the severity of dyskinesia when coadministered with L-DOPA. A second experiment was undertaken in order to study the effects of KW-6002 in L-DOPA-naive rats. Thirty-five animals were allotted to four groups to receive a 21-day treatment with: (i) KW-6002 (10 mg/kg/day); (ii) L-DOPA (6 mg/kg/day) i.p.; (iii) KW-6002 plus L-DOPA (same doses as above) or (iv) vehicle. Chronic treatment with KW-6002-only produced a significant relief of motor disability in the rotarod test in the absence of any abnormal involuntary movements. Combined treatment with L-DOPA and KW-6002 improved rotarod performance to a significantly higher degree than did each of the two drugs alone. However, this combined treatment induced dyskinesia to about the same degree as did L-DOPA alone. In situ hybridization histochemistry showed that KW-6002 treatment alone caused an approximately 20% reduction in the striatal levels of preproenkephalin mRNA, whereas neither the coadministration of KW-6002 and L-DOPA nor L-DOPA alone significantly altered the expression of this transcript in the dopamine-denervated striatum. Either alone or in combination with L-DOPA, KW-6002 did not have any modulatory effect on prodynorphin mRNA expression or FosB/DeltaFosB-like immunoreactivity in the dopamine-denervated striatum. These results show that monotreatment with an adenosine A2a receptor antagonist can relieve motor disability without inducing behavioural and cellular signs of dyskinesia in rats with 6-hydroxydopamine lesions. Cotreatment with KW-6002 and L-DOPA potentiates the therapeutic effect but not the dyskinesiogenic potential of the latter drug. Topics: Animals; Behavior, Animal; Corpus Striatum; Disease Models, Animal; Drug Therapy, Combination; Dyskinesia, Drug-Induced; Enkephalins; Female; Levodopa; Motor Activity; Oxidopamine; Parkinsonian Disorders; Protein Precursors; Proto-Oncogene Proteins c-fos; Purinergic P1 Receptor Antagonists; Purines; Rats; Rats, Sprague-Dawley; Receptor, Adenosine A2A; RNA, Messenger; Treatment Outcome | 2003 |
Adenosine A2A receptors in neuroadaptation to repeated dopaminergic stimulation: implications for the treatment of dyskinesias in Parkinson's disease.
The A2A receptor has recently attracted considerable interest as a potential target for Parkinson's disease (PD) therapy based on the motor-enhancing and neuroprotective effects of A2A antagonists in animal models of PD. The unique neuronal localization of the adenosine A2A receptor in the basal ganglia and its extensive interactions with dopaminergic and glutamatergic systems led the authors to investigate a potential role of the A2A receptor in the development of behavioral sensitization in response to repeated dopaminergic stimulation. Because dopamine-induced behavioral sensitization shares several neurochemical and behavioral features with dyskinesia, characterizing this novel aspect of A2A receptor function may enhance understanding and management of dyskinesia in PD. Recent studies from several laboratories suggest that the A2A receptor may be an important mediator of maladaptive changes in response to long-term dopamine stimulation. The authors summarize their investigation of the role of A2A receptors in two paradigms of behavioral sensitization elicited by daily treatment with either L-dopa in hemiparkinsonian mice or amphetamine in naive mice. The results demonstrate that the A2A receptor is required for the development of behavioral sensitization in response to repeated L-dopa treatment in hemiparkinsonian mice and repeated amphetamine administration in normal mice. Together with pharmacologic studies, these results raise the possibility that the maladaptive dyskinetic responses to long-term L-dopa management of PD may be attenuated by A2A receptor blockade. Potential presynaptic, postsynaptic (cellular), and trans-synaptic (network) mechanisms are discussed. Topics: Adenosine A2 Receptor Antagonists; Amphetamine; Animals; Antiparkinson Agents; Behavior, Animal; Disease Models, Animal; Dopamine; Dopamine Agonists; Drug Tolerance; Dyskinesia, Drug-Induced; Humans; Levodopa; Mice; Mice, Knockout; Neurons; Neuroprotective Agents; Oxidopamine; Parkinsonian Disorders; Purines; Pyrimidines; Receptor, Adenosine A2A; Synapses; Triazoles | 2003 |
Adenosine A2A receptors and depression.
Adenosine and its analogues have been shown to induce "behavioral despair" in animal models believed to be relevant to depression. Recent data have shown that selective adenosine A2A receptor antagonists (e.g., SCH 58261, ZM241385, and KW6002) or genetic inactivation of the receptor was effective in reversing signs of behavioral despair in the tail suspension and forced swim tests, two screening procedures predictive of antidepressant activity. A2A antagonists were active in the tail suspension test using either mice previously screened for having high immobility scores or mice that were selectively bred for their spontaneous "helplessness" in this test. At stimulant doses, caffeine, a nonselective A1/A2A receptor antagonist, was effective in the forced swim test. The authors have hypothesized that the antidepressant-like effect of selective A2A antagonists is linked to an interaction with dopaminergic transmission, possibly in the frontal cortex. In support of this idea, administration of the dopamine D2 receptor antagonist haloperidol prevented antidepressant-like effects elicited by SCH 58261 in the forced swim test (putatively involving cortex), whereas it had no effect on stimulant motor effects of SCH 58261 (putatively linked to ventral striatum). The interaction profile of caffeine with haloperidol differed markedly from that of SCH 58261 in the forced swim and motor activity tests. Therefore, a clear-cut antidepressant-like effect could not be ascribed to caffeine. In conclusion, available data support the proposition that a selective blockade of the adenosine A2A receptor may be an interesting target for the development of effective antidepressant agents. Topics: Adenosine; Adenosine A2 Receptor Antagonists; Animals; Antidepressive Agents; Behavior, Animal; Caffeine; Depression; Disease Models, Animal; Dopamine Antagonists; Drug Interactions; Haloperidol; Mice; Mice, Knockout; Motor Activity; Neurotransmitter Agents; Parkinsonian Disorders; Purines; Pyrimidines; Receptor, Adenosine A2A; Triazines; Triazoles | 2003 |
Discovery of nonxanthine adenosine A2A receptor antagonists for the treatment of Parkinson's disease.
During a program to investigate the biochemical basis of side effects associated with the antimalarial drug mefloquine, the authors made the unexpected discovery that the (-)-(R,S)-enantiomer of the drug is a potent adenosine A2A receptor antagonist. Although the compound was ineffective in in vivo animal models of central adenosine receptor function, it provided a unique nonxanthine adenosine A2A receptor antagonist lead structure and encouraged the initiation of a medicinal chemistry program to develop novel adenosine A2A antagonists for the management of Parkinson's disease (PD). The authors have synthesized and screened more than 2,000 chemically diverse and novel adenosine A(2A antagonists. Early examples from two distinct chemical series are the thieno[3,2-dy]pyrimidine VER-6623 and the purine compounds VER-6947 and VER-7835, which have high affinity at adenosine A2A receptors (K(i) values 1.4, 1.1, and 1.7 nmol/L, respectively) and act as competitive antagonists. In particular, VER-6947 and VER-7835 demonstrate potent in vivo activity reversing the locomotor deficit caused by the D2 receptor antagonist haloperidol, with minimum effective doses comparable with that of KW6002 (0.3 to 1 mg/kg). In conclusion, the authors have discovered potent, selective, and in vivo active nonxanthine adenosine A2A antagonists that have considerable promise as a new therapy for PD. Topics: Adenosine; Adenosine A2 Receptor Antagonists; Animals; Antiparkinson Agents; Binding, Competitive; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Design; Drug Evaluation, Preclinical; Humans; Ligands; Mefloquine; Mice; Motor Activity; Neuroprotective Agents; Parkinsonian Disorders; Phenethylamines; Purines; Pyrimidines; Radioligand Assay; Rats; Triazines; Triazoles | 2003 |
Distribution of adenosine A(2A) receptor antagonist KW-6002 and its effect on gene expression in the rat brain.
A novel adenosine A(2A) receptor selective antagonist, KW-6002 [(E)-1,3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione], possesses antiparkinsonian activities in rodent and primate models. In the present study, we investigated the distribution of [14C]KW-6002 in forebrain after oral administration at pharmacologically effective doses. Also, we monitored the effects of the compound on preproenkephalin (PPE) and preprotachykinin (PPT) gene expression in rat striatum. The highest level of radioactivity was observed in the striatum after oral administration of [14C]KW-6002; 30 min after 0.1 and 0.3 mg/kg, the density values in the striatum were 2.45 and 2.43 times higher than those in a reference region (frontal cortex), respectively. At the dose of 3 mg/kg, p.o., the ratio was only 1.58 and the compound was distributed more extensively in the brain. The distribution pattern and intensity of radioactivity were maintained even 90 min after the administration of [14C]KW-6002. Oral administration of KW-6002 (0.3 and 3 mg/kg/day) to rats for 14 days reversed the increased gene expression of PPE in striatum that had been depleted of dopamine by prior treatment with 6-hydroxydopamine (6-OHDA). On the other hand, KW-6002 did not alter the decreased gene expression of PPT in 6-OHDA-treated rats. These results are the first to show directly that orally administered KW-6002 is distributed selectively to the striatum and that it modulates the activity of striatopallidal enkephalin-containing neurons but not striatonigral substance P-containing neurons. Topics: Administration, Oral; Adrenergic Antagonists; Animals; Carbon Radioisotopes; Corpus Striatum; Enkephalins; Gene Expression; Male; Neurons; Oxidopamine; Parkinsonian Disorders; Protein Precursors; Purinergic P1 Receptor Antagonists; Purines; Rats; Rats, Sprague-Dawley; Receptor, Adenosine A2A; RNA, Messenger; Sympatholytics; Tachykinins; Tissue Distribution | 2002 |
Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson's disease.
Adenosine A2A receptors are abundant in the caudate-putamen and involved in the motor control in several species. In MPTP-treated monkeys, A2A receptor-blockade with an antagonist alleviates parkinsonian symptoms without provoking dyskinesia, suggesting this receptor may offer a new target for the antisymptomatic therapy of Parkinson's disease. In the present study, a significant neuroprotective effect of A2A receptor antagonists is shown in experimental models of Parkinson's disease. Oral administration of A2A receptor antagonists protected against the loss of nigral dopaminergic neuronal cells induced by 6-hydroxydopamine in rats. A2A antagonists also prevented the functional loss of dopaminergic nerve terminals in the striatum and the ensuing gliosis caused by MPTP in mice. The neuroprotective property of A2A receptor antagonists may be exerted by altering the packaging of these neurotoxins into vesicles, thus reducing their effective intracellular concentration. We therefore conclude that the adenosine A2A receptor may provide a novel target for the long-term medication of Parkinson's disease, because blockade of this receptor exerts both acutely antisymptomatic and chronically neuroprotective activities. Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; 1-Methyl-4-phenylpyridinium; Animals; Antineoplastic Agents; Disease Models, Animal; Dopamine; Dopamine Agents; Gliosis; Herbicides; Male; Nerve Degeneration; Neurons; Neuroprotective Agents; Oxidopamine; Parkinsonian Disorders; PC12 Cells; Purinergic P1 Receptor Antagonists; Purines; Rats; Rats, Sprague-Dawley; Receptor, Adenosine A2A; Sympatholytics; Tritium | 2002 |
Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson's disease.
Recent epidemiological studies have established an association between the common consumption of coffee or other caffeinated beverages and a reduced risk of developing Parkinson's disease (PD). To explore the possibility that caffeine helps prevent the dopaminergic deficits characteristic of PD, we investigated the effects of caffeine and the adenosine receptor subtypes through which it may act in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin model of PD. Caffeine, at doses comparable to those of typical human exposure, attenuated MPTP-induced loss of striatal dopamine and dopamine transporter binding sites. The effects of caffeine were mimicked by several A(2A) antagonists (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH 58261), 3,7-dimethyl-1-propargylxanthine, and (E)-1,3-diethyl-8 (KW-6002)-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione) (KW-6002) and by genetic inactivation of the A(2A) receptor, but not by A(1) receptor blockade with 8-cyclopentyl-1,3-dipropylxanthine, suggesting that caffeine attenuates MPTP toxicity by A(2A) receptor blockade. These data establish a potential neural basis for the inverse association of caffeine with the development of PD, and they enhance the potential of A(2A) antagonists as a novel treatment for this neurodegenerative disease. Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; 3,4-Dihydroxyphenylacetic Acid; Animals; Caffeine; Catechols; Corpus Striatum; Disease Models, Animal; Dopamine; Dose-Response Relationship, Drug; Immunity, Innate; Injections, Intraperitoneal; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Neuroprotective Agents; Parkinsonian Disorders; Purinergic P1 Receptor Antagonists; Purines; Pyrimidines; Receptor, Adenosine A2A; Receptors, Purinergic P1; Theobromine; Triazoles; Xanthines | 2001 |