istradefylline has been researched along with Disease-Models--Animal* in 32 studies
5 review(s) available for istradefylline and Disease-Models--Animal
Article | Year |
---|---|
Suitability of the adenosine antagonist istradefylline for the treatment of Parkinson's disease: pharmacokinetic and clinical considerations.
Recent experimental and clinical research has shown that A2A adenosine receptor antagonism can bring about an improvement in the motor behavior of patients with Parkinson's disease. Istradefylline , a xanthine derivative, has the longest half-life of all the currently available A2A adenosine receptor antagonists; it can successfully permeate through the blood-brain barrier and has a high human A2A adenosine receptor affinity.. In this article, the author discusses the potential role of A2A adenosine receptor antagonists in the treatment of Parkinson's disease through the evaluation of istradefylline. Specifically, the article reviews the clinical and pharmacokinetic information available to elucidate its therapeutic potential.. A2A adenosine receptor antagonists are efficacious in combination with l-dopa. l-dopa has a complex pharmacokinetic behavior and causes long-term behavioral and metabolic side effects. Future research on A2A adenosine receptor antagonism should consider compounds like istradefylline as l-dopa and/or dopamine agonist-sparing treatment alternatives, since their clinical handling, safety and side-effect profile are superior to l-dopa and/or dopamine agonists. The current focus to demonstrate a specific dyskinesia-ameliorating efficacy of A2A adenosine receptor antagonism in clinical trials is risky, since the presentation of dyskinesia varies on a day-to-day basis and is considerably influenced by peripheral l-dopa metabolism. The demonstration of an antidyskinetic effect may convince authorities, but this is far less relevant in clinical practice as patients generally better tolerate dyskinesia than other phenomena and dopaminergic side effects. Topics: Adenosine; Adenosine A2 Receptor Antagonists; Animals; Blood-Brain Barrier; Disease Models, Animal; Dopamine Agonists; Dyskinesias; Half-Life; Humans; Levodopa; Parkinson Disease; Purines; Treatment Outcome | 2013 |
Novel neuroprotection by caffeine and adenosine A(2A) receptor antagonists in animal models of Parkinson's disease.
The adenosine A(2A) receptor has recently emerged as a leading non-dopaminergic therapeutic target for Parkinson's disease, largely due to the restricted distribution of the receptor in the striatum and the profound interaction between adenosine and dopamine receptors in brain. Two lines of research in particular have demonstrated the promise of the A(2A) receptor antagonists as novel anti-parkinsonian drugs. First, building on extensive preclinical animal studies, the A(2A) receptor antagonist KW6002 has demonstrated its potential to increase motor activity in PD patients of the advanced stage in a recent clinical phase IIB trial. Second, recently two prospective epidemiological studies of large cohorts have firmly established the inverse relationship between the consumption of caffeine (a non-specific adenosine antagonist) and the risk of developing PD. The potential neuroprotective effect of caffeine and A(2A) receptor antagonists in PD is further substantiated by the demonstration that pharmacological blockade (by caffeine or specific A(2A) antagonists) or genetic depletion of the A(2A) receptor attenuated dopaminergic neurotoxicity and neurodegeneration in animal models of PD. Moreover, A(2A) receptor antagonism-mediated neuroprotection goes beyond PD models and can be extended to a variety of other brain injuries induced by stroke, excitotoxicity and mitochondrial toxins. Intensive investigations are under way to dissect out common cellular mechanisms (such as A(2A) receptor modulation of neuroinflammation) which may underlie the broad spectrum of neuroprotection by A(2A) receptor inactivation in brain. Topics: Adenosine A2 Receptor Antagonists; Animals; Caffeine; Central Nervous System; Clinical Trials, Phase II as Topic; Disease Models, Animal; Glutamic Acid; Humans; Inflammation; Neuroprotective Agents; Parkinson Disease; Purines | 2006 |
New therapies for the treatment of Parkinson's disease: adenosine A2A receptor antagonists.
The development of non-dopaminergic therapies for the treatment of Parkinson's disease (PD) has attracted much interest in recent years. Among new different classes of drugs, adenosine A2A receptor antagonists have emerged as best candidates. The present review will provide an updated summary of the results reported in literature concerning the effects of adenosine A2A antagonists in rodent and primate models of PD. These results show that A2A receptor antagonists improve motor deficits without inducing dyskinesia and counteract parkinsonian tremor. In progress clinical trials have shown that a low dose of L-DOPA plus KW-6002 produced symptomatic relief no different from that produced by an optimal dose of L-DOPA alone, whereas dyskinesias were reduced rendering this class of compounds particularly attractive. Topics: Adenosine A2 Receptor Antagonists; Animals; Antiparkinson Agents; Disease Models, Animal; Dyskinesias; Humans; Levodopa; Parkinson Disease; Primates; Purines; Receptor, Adenosine A2A | 2005 |
Progress in pursuit of therapeutic A2A antagonists: the adenosine A2A receptor selective antagonist KW6002: research and development toward a novel nondopaminergic therapy for Parkinson's disease.
Research and development of the adenosine A2A receptor selective antagonist KW6002 have focused on developing a novel nondopaminergic therapy for Parkinson's disease (PD). Salient pharmacologic features of KW6002 were investigated in several animal models of PD. In rodent and primate models, KW6002 provides symptomatic relief from parkinsonian motor deficits without provoking dyskinesia or exacerbating existing dyskinesias. The major target neurons of the A2A receptor antagonist were identified as GABAergic striatopallidal medium spiny neurons. A possible mechanism of A2A receptor antagonist action in PD has been proposed based on the involvement of striatal and pallidal presynaptic A2A receptors in the "dual" modulation of GABAergic synaptic transmission. Experiments with dopamine D2 receptor knockout mice showed that A2A receptors can function and anti-PD activities of A2A antagonists can occur independent of the dopaminergic system. Clinical studies of KW6002 in patients with advanced PD with L-dopa-related motor complications yielded promising results with regard to motor symptom relief without motor side effects. The development of KW6002 represents the first time that a concept gleaned from A2A biologic research has been applied successfully to "proof of concept" clinical studies. The selective A2A antagonist should provide a novel nondopaminergic approach to PD therapy. Topics: Adenosine A2 Receptor Antagonists; Animals; Antiparkinson Agents; Clinical Trials as Topic; Corpus Striatum; Disease Models, Animal; Drug Evaluation, Preclinical; Dyskinesia, Drug-Induced; gamma-Aminobutyric Acid; Globus Pallidus; Humans; Levodopa; Mice; Mice, Knockout; Motor Activity; Neurons; Oxidopamine; Parkinson Disease; Parkinsonian Disorders; Primates; Purines; Rats; Receptor, Adenosine A2A; Receptors, Dopamine D2 | 2003 |
Translating A2A antagonist KW6002 from animal models to parkinsonian patients.
Improving the translation of novel findings from basic laboratory research to better therapies for neurologic disease constitutes a major challenge for the neurosciences. This brief review of aspects of the development of an adenosine A2A antagonist for use in the management of Parkinson's disease (PD) illustrates approaches to some of the relevant issues. Adenosine A2A receptors, highly expressed on striatal medium spiny neurons, signal via kinases whose aberrant activation has been linked to the appearance of parkinsonian signs after dopaminergic denervation and to the motor response complications produced by dopaminomimetic therapy. To assess the ability of A2A receptor blockade to normalize certain of these kinases and thus benefit motor dysfunction, the palliative and prophylactic effects of the selective antagonist KW6002 were first evaluated in rodent and primate models. In hemiparkinsonian rats, KW6002 reversed the intermittent L-dopa treatment-induced, protein kinase A-mediated hyperphosphorylation of striatal alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid receptor GluR1 S845 residues and the concomitant shortening in motor response duration. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys, coadministration of KW6002 with daily apomorphine injections acted prophylactically to prevent dyskinesia onset. These and related preclinical observations guided the design of a limited, randomized, controlled, proof-of-concept study of the A2A antagonist in patients with moderately advanced PD. Although KW6002 alone or in combination with a steady-state IV infusion of optimal-dose L-dopa had no effect on parkinsonian severity, the drug potentiated the antiparkinsonian response to low-dose L-dopa with fewer dyskinesias than produced by optimal-dose L-dopa alone. KW6002 also safely prolonged the efficacy half-time of L-dopa. The results suggest that drugs capable of selectively blocking adenosine A2A receptors could confer therapeutic benefit to L-dopa-treated parkinsonian patients and warrant further evaluation in phase II studies. They also illustrate a strategy for successfully bridging a novel approach to PD therapy from an evolving research concept to pivotal clinical trials. Topics: Adenosine A2 Receptor Antagonists; Animals; Antiparkinson Agents; Clinical Trials as Topic; Corpus Striatum; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Drug Synergism; Humans; Levodopa; Macaca fascicularis; Male; Motor Activity; Neurons; Parkinsonian Disorders; Purines; Rats; Rats, Sprague-Dawley; Receptors, AMPA | 2003 |
27 other study(ies) available for istradefylline and Disease-Models--Animal
Article | Year |
---|---|
The Corticostriatal Adenosine A
Working memory (WM) taps into multiple executive processes including encoding, maintenance, and retrieval of information, but the molecular and circuit modulation of these WM processes remains undefined due to the lack of methods to control G protein-coupled receptor signaling with temporal resolution of seconds.. Optogenetic activation of striatopallidal A. The A Topics: Action Potentials; Adenosine A2 Receptor Antagonists; Animals; Corpus Striatum; Disease Models, Animal; Enkephalins; Female; Macaca fascicularis; Male; Maze Learning; Memory Disorders; Memory, Short-Term; Mice; Mice, Inbred C57BL; Mice, Transgenic; MPTP Poisoning; Nerve Tissue Proteins; Prefrontal Cortex; Purines; Receptor, Adenosine A2A; Spatial Memory | 2018 |
Equilibrative nucleoside transporter ENT1 as a biomarker of Huntington disease.
The initial goal of this study was to investigate alterations in adenosine A Topics: Adenosine; Adenosine A2 Receptor Antagonists; Animals; Biomarkers; Corpus Striatum; Disease Models, Animal; Gene Expression Regulation; Humans; Huntingtin Protein; Huntington Disease; Locomotion; Nucleoside Transport Proteins; Prefrontal Cortex; Psychomotor Disorders; Purines; Rats; Rats, Transgenic; Receptor, Adenosine A2A; Triazines; Triazoles; Trinucleotide Repeat Expansion; Tritium | 2016 |
Suppression of adenosine 2a receptor (A2aR)-mediated adenosine signaling improves disease phenotypes in a mouse model of amyotrophic lateral sclerosis.
Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease in which the majority of upper and lower motor neurons are degenerated. Despite intensive efforts to identify drug targets and develop neuroprotective strategies, effective therapeutics for ALS remains unavailable. The identification and characterization of novel targets and pathways remain crucial in the development of ALS therapeutics. Adenosine is a major neuromodulator that actively regulates synaptic transmission. Interestingly, adenosine levels are significantly elevated in the cerebrospinal fluid (CSF) of progressing human ALS patients. In the current study, we showed that adenosine 2a receptor (A2aR), but not adenosine 1 receptor (A1R), is highly enriched in spinal (motor) neurons. A2aR expression is also selectively increased at the symptomatic onset in the spinal cords of SOD1G93A mice and end-stage human ALS spinal cords. Interestingly, we found that direct adenosine treatment is sufficient to induce embryonic stem cell-derived motor neuron (ESMN) cell death in cultures. Subsequent pharmacological inhibition and partial genetic ablation of A2aR (A2aR(+/-)) significantly protect ESMN from SOD1G93A(+) astrocyte-induced cell death and delay disease progression of SOD1G93A mice. Taken together, our results provide compelling novel evidence that A2aR-mediated adenosine signaling contributes to the selective spinal motor neuron degeneration observed in the SOD1G93A mouse model of ALS. Topics: Adenosine; Adenosine A2 Receptor Antagonists; Aged; Aged, 80 and over; Amyotrophic Lateral Sclerosis; Animals; Astrocytes; Cell Differentiation; Cells, Cultured; Cerebral Cortex; Disease Models, Animal; Female; Humans; Male; Mediator Complex; Mice; Mice, Transgenic; Middle Aged; Motor Neurons; Muscle Strength; Purines; Receptor, Adenosine A2A; Signal Transduction; Spinal Cord; Superoxide Dismutase | 2015 |
Inactivation of adenosine A2A receptors reverses working memory deficits at early stages of Huntington's disease models.
Cognitive impairments in Huntington's disease (HD) are attributed to a dysfunction of the cortico-striatal pathway and significantly affect the quality of life of the patients, but this has not been a therapeutic focus in HD to date. We postulated that adenosine A(2A) receptors (A(2A)R), located at pre- and post-synaptic elements of the cortico-striatal pathways, modulate striatal neurotransmission and synaptic plasticity and cognitive behaviors. To critically evaluate the ability of A(2A)R inactivation to prevent cognitive deficits in early HD, we cross-bred A(2A)R knockout (KO) mice with two R6/2 transgenic lines of HD (CAG120 and CAG240) to generate two double transgenic R6/2-CAG120-A(2A)R KO and R6/2-CAG240-A(2A)R KO mice and their corresponding wild-type (WT) littermates. Genetic inactivation of A(2A)R prevented working memory deficits induced by R6/2-CAG120 at post-natal week 6 and by R6/2-CAG240 at post-natal month 2 and post-natal month 3, without modifying motor deficits. Similarly the A2(A)R antagonist KW6002 selectively reverted working memory deficits in R6/2-CAG240 mice at post-natal month 3. The search for possible mechanisms indicated that the genetic inactivation of A(2A)R did not affect ubiquitin-positive neuronal inclusions, astrogliosis or Thr-75 phosphorylation of DARPP-32 in the striatum. Importantly, A(2A)R blockade preferentially controlled long-term depression at cortico-striatal synapses in R6/2-CAG240 at post-natal week 6. The reported reversal of working memory deficits in R6/2 mice by the genetic and pharmacological inactivation of A(2A)R provides a proof-of-principle for A(2A)R as novel targets to reverse cognitive deficits in HD, likely by controlling LTD deregulation. Topics: Adenosine A2 Receptor Antagonists; Animals; Astrocytes; Cerebral Cortex; Cognition Disorders; Corpus Striatum; Disease Models, Animal; Disease Progression; Gliosis; Huntington Disease; Inclusion Bodies; Long-Term Synaptic Depression; Male; Memory Disorders; Memory, Short-Term; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; Purines; Receptor, Adenosine A2A; Ubiquitin | 2015 |
Antidepressant activity of the adenosine A2A receptor antagonist, istradefylline (KW-6002) on learned helplessness in rats.
Istradefylline, an adenosine A2A receptor antagonist, improves motor function in animal models of Parkinson's disease (PD) and in patients with PD. In addition, some A2A antagonists exert antidepressant-like activity in rodent models of depression, such as the forced swim and the tail suspension tests.. We have investigated the effect of istradefylline on depression-like behaviors using the rat learned helplessness (LH) model.. Acute, as well as chronic, oral administration of istradefylline significantly improved the inescapable shock (IES)-induced escape deficit with a degree of efficacy comparable to chronic treatment with the tricyclic antidepressant desipramine and the selective serotonin (5-HT) reuptake inhibitor, fluoxetine. Both the A1/A2A receptor nonspecific antagonist theophylline and the moderately selective antagonist CGS15943, but not the A1 selective antagonist DPCPX, ameliorated the IES-induced escape deficit. The enhancement of escape response by istradefylline was reversed by a local injection of the A2A specific agonist CGS21680 either into the nucleus accumbens, the caudate-putamen, or the paraventricular nucleus of the hypothalamus, but not by the A1 specific agonist R-PIA into the nucleus accumbens. Moreover, neither the 5-HT2A/2C receptor antagonist methysergide or the adrenergic α 2 antagonist yohimbine, nor the β-adrenergic antagonist propranolol, affected the improvement of escape response induced by istradefylline.. Istradefylline exerts antidepressant-like effects via modulation of A2A receptor activity which is independent of monoaminergic transmission in the brain. Istradefylline may represent a novel treatment option for depression in PD as well as for the motor symptoms. Topics: Adenosine A2 Receptor Antagonists; Animals; Antidepressive Agents; Behavior, Animal; Brain; Depression; Desipramine; Disease Models, Animal; Escape Reaction; Floxuridine; Helplessness, Learned; Hindlimb Suspension; Male; Parkinson Disease; Purines; Rats; Rats, Sprague-Dawley; Swimming | 2014 |
Effects of the adenosine A2A antagonist istradefylline on cognitive performance in rats with a 6-OHDA lesion in prefrontal cortex.
Altered cognitive function is a common feature of both the early and later stages of Parkinson's disease (PD) that involves alterations in cortical dopamine content. Adenosine A2A antagonists, such as istradefylline, improve motor function in PD, but their effect on cognitive impairment has not been determined.. The present study investigated whether impairment of working memory due to the loss of dopaminergic input into the prefrontal cortex (PFC) is reversed by administration of istradefylline. We also evaluated whether A2A antagonist administration modulates dopamine levels in the PFC.. Bilateral lesions of the dopaminergic input to the PFC were produced in rats using 6-hydroxydopamine (6-OHDA). Cognitive performance was evaluated using an object recognition task and delayed alternation task. The effects of istradefylline, donepezil and methamphetamine on cognitive performance were examined. In addition, the effect of istradefylline on extracellular dopamine levels in the PFC was studied.. PFC dopamine levels and cognitive performance were significantly reduced by 6-OHDA lesioning. Istradefylline, donepezil and methamphetamine improved cognitive performance of PFC-lesioned rats. Istradefylline increased dopamine levels in the PFC in both normal and PFC-lesioned rats.. PFC dopaminergic input plays an important role in working memory performance. Blockade of A2A receptors using istradefylline reverses the changes in cognitive function, and this may be due to an increase in PFC dopamine content. Adenosine A2A receptor antagonists not only improve motor performance in PD but may also lead to improved cognition. Topics: Adenosine A2 Receptor Antagonists; Animals; Cognition; Cognition Disorders; Disease Models, Animal; Donepezil; Dopamine; Indans; Male; Memory Disorders; Memory, Short-Term; Methamphetamine; Oxidopamine; Piperidines; Prefrontal Cortex; Purines; Rats; Rats, Sprague-Dawley | 2013 |
An improved model to investigate the efficacy of antidyskinetic agents in hemiparkinsonian rats.
A number of experimental models of L-DOPA-induced dyskinesia have been proposed, but these models result in a low to medium rate of dyskinetic animals with mild to severe symptoms. The objective of this study was to combine a model of 6-OHDA-induced parkinsonism and of L-DOPA-induced dyskinesia in rats to establish a reliable preclinical model. Two stereotaxic injections of 6-OHDA were administered in the left striatum. This model led to 90-100% of rats with a marked contralateral circling behaviour, significant limb use asymmetry (20%), a decrease in ipsilateral striatal dopamine content (70%) and degeneration of dopamine neurons in the substantia nigra (70%). Chronic treatment with L-DOPA was administered for 35 days and consisted of three phases with incremental daily doses. The third phase resulted in 83-90% of rats developing severe abnormal involuntary movements (AIMs) which included limb and locomotive dyskinesia, axial dystonia and orolingual dyskinesia. Reproducibility of the model, criteria of strict blinding, placebo-controlled design, randomization of study subjects and pretrial determination of sample size were used to measure efficacy of amantadine and istradefylline and to validate the protocol design. Acute or subchronic post-treatment with amantadine reduced the severity of dyskinesia while istradefylline punctually attenuated AIMs. Our experimental conditions using gradual development of dyskinesia induced by increasing doses of L-DOPA resulted in a reliable model of L-DOPA-induced dyskinesia with a high rate of dyskinetic rats. Topics: Adenosine A2 Receptor Antagonists; Amantadine; Animals; Antiparkinson Agents; Behavior, Animal; Benserazide; Biological Assay; Corpus Striatum; Disease Models, Animal; Dopamine; Dopamine Agents; Drug Administration Schedule; Drug Evaluation, Preclinical; Dyskinesia, Drug-Induced; Enzyme Inhibitors; Levodopa; Male; Oxidopamine; Parkinsonian Disorders; Placebos; Purines; Random Allocation; Rats; Reproducibility of Results; Rotation; Sample Size; Single-Blind Method; Sympatholytics | 2011 |
Functional changes in postsynaptic adenosine A(2A) receptors during early stages of a rat model of Huntington disease.
Huntington disease (HD) is a neurodegenerative disorder involving preferential loss of striatal GABAergic medium spiny neurons. Adenosine A(2A) receptors (A(2A)Rs) are present in the striatum at both presynaptic and post-synaptic levels. Blocking pre-synaptic A(2A)Rs, localized in glutamatergic terminals that contact striatal GABAergic dynorphinergic neurons, reduces glutamate release, which could be beneficial in HD. On the other hand, blockade of post-synaptic A(2A)Rs, localized in striatal GABAergic enkephalinergic neurons, could exacerbate the motor dysfunction. To evaluate the function of pre- or post-synaptic A(2A)Rs in HD we used selective antagonists for these receptors in a transgenic rat model of HD. Locomotor activity after systemic administration of the postsynaptic A(2A)R antagonist KW-6002 was used to investigate the function of post-synaptic A(2A)Rs. The role of pre-synaptic A(2A)Rs was instead evaluated by measuring the reduction of the electromyographic response of mastication muscles during electrical stimulation of the orofacial motor cortex after the systemic administration of the presynaptic A(2A)R antagonist SCH-442416. The ability of KW-6002 to produce locomotor activation was lost at 6 and 12 month-old of age in heterozygous and homozygous transgenic rats, but not in wild-type littermates. Nevertheless, no significant changes were observed up to 12 months of age in the potency of SCH-442416 to decrease the electromyographic response after cortical electrical stimulation. These results agree with a selective impairment of the striatal GABAergic enkephalinergic neuronal function during pre-symptomatic stages in HD. Since presynaptic A(2A)R function is not impaired, this receptor could probably be used as a target for the symptomatic treatment of the disease. Topics: Adenosine A2 Receptor Antagonists; Animals; Corpus Striatum; Disease Models, Animal; Electric Stimulation; Electromyography; GABAergic Neurons; Huntington Disease; Masticatory Muscles; Motor Activity; Purines; Pyrazoles; Pyrimidines; Rats; Rats, Transgenic; Receptor, Adenosine A2A; Receptors, Presynaptic; Synaptic Transmission; Treatment Outcome | 2011 |
In vivo characterization of a dual adenosine A2A/A1 receptor antagonist in animal models of Parkinson's disease.
The in vivo characterization of a dual adenosine A(2A)/A(1) receptor antagonist in several animal models of Parkinson's disease is described. Discovery and scale-up syntheses of compound 1 are described in detail, highlighting optimization steps that increased the overall yield of 1 from 10.0% to 30.5%. Compound 1 is a potent A(2A)/A(1) receptor antagonist in vitro (A(2A) K(i) = 4.1 nM; A(1) K(i) = 17.0 nM) that has excellent activity, after oral administration, across a number of animal models of Parkinson's disease including mouse and rat models of haloperidol-induced catalepsy, mouse model of reserpine-induced akinesia, rat 6-hydroxydopamine (6-OHDA) lesion model of drug-induced rotation, and MPTP-treated non-human primate model. Topics: Adenosine A1 Receptor Antagonists; Adenosine A2 Receptor Antagonists; Administration, Oral; Animals; Antiparkinson Agents; Callithrix; Disease Models, Animal; Female; Indenes; Macaca fascicularis; Male; Mice; Mice, Inbred BALB C; Parkinson Disease; Pyrimidines; Rats; Rats, Sprague-Dawley; Receptor, Adenosine A2A | 2010 |
Caffeine and an adenosine A(2A) receptor antagonist prevent memory impairment and synaptotoxicity in adult rats triggered by a convulsive episode in early life.
Seizures early in life cause long-term behavioral modifications, namely long-term memory deficits in experimental animals. Since caffeine and adenosine A(2A) receptor (A(2A)R) antagonists prevent memory deficits in adult animals, we now investigated if they also prevented the long-term memory deficits caused by a convulsive period early in life. Administration of kainate (KA, 2 mg/kg) to 7-days-old (P7) rats caused a single period of self-extinguishable convulsions which lead to a poorer memory performance in the Y-maze only when rats were older than 90 days, without modification of locomotion or anxiety-like behavior in the elevated-plus maze. In accordance with the relationship between synaptotoxicity and memory dysfunction, the hippocampus of these adult rats treated with kainate at P7 displayed a lower density of synaptic proteins such as SNAP-25 and syntaxin (but not synaptophysin), as well as vesicular glutamate transporters type 1 (but not vesicular GABA transporters), with no changes in PSD-95, NMDA receptor subunits (NR1, NR2A, NR2B) or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor subunits (GluR1, GluR2) compared with controls. Caffeine (1 g/L) or the A(2A)R antagonist, KW6002 (3 mg/kg) applied in the drinking water from P21 onwards, prevented these memory deficits in P90 rats treated with KA at P7, as well as the accompanying synaptotoxicity. These results show that a single convulsive episode in early life causes a delayed memory deficit in adulthood accompanied by a glutamatergic synaptotoxicity that was prevented by caffeine or adenosine A(2A)R antagonists. Topics: Adenosine A2 Receptor Antagonists; Analysis of Variance; Animals; Animals, Newborn; Caffeine; Disease Models, Animal; Disease Progression; Drug Administration Schedule; Glial Fibrillary Acidic Protein; Kainic Acid; Memory Disorders; Neurotoxicity Syndromes; Phosphodiesterase Inhibitors; Purines; Pyrimidines; Qa-SNARE Proteins; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Seizures; Synapses; Synaptophysin; Synaptosomal-Associated Protein 25; Triazoles; Tritium; Xanthines | 2010 |
Antagonists of the human A(2A) receptor. Part 5: Highly bio-available pyrimidine-4-carboxamides.
A novel series of antagonists of the human A(2A) receptor have been identified and have been shown to display good potency and high degrees of selectivity over other receptor sub-types. Displaying in vivo potency in commonly used disease models and high oral bio-availability, this class of compounds may serve as clinically useful treatments for the relief of the symptoms associated with Parkinson's disease. Topics: Adenosine A2 Receptor Antagonists; Administration, Oral; Amides; Animals; Disease Models, Animal; Humans; Mice; Pyrimidines; Receptor, Adenosine A2A | 2009 |
Effects of the adenosine A 2A antagonist KW 6002 (istradefylline) on pimozide-induced oral tremor and striatal c-Fos expression: comparisons with the muscarinic antagonist tropicamide.
Typical antipsychotic drugs, including haloperidol and pimozide, have been shown to produce parkinsonian motor effects such as akinesia and tremor. Furthermore, there is an antagonistic interaction between adenosine A(2A) and dopamine D(2) receptors in the basal ganglia, which is important for motor functions related to the production of parkinsonian symptoms. Several experiments were conducted to assess the effects of the selective adenosine A(2A) antagonist KW 6002 on both the motor and cellular effects of subchronic administration of pimozide. The motor test employed was tremulous jaw movements, which is used as a model of parkinsonian tremor. In addition, c-Fos expression in the ventrolateral neostriatum, which is the striatal area most associated with tremulous jaw movements, was used as a marker of striatal cell activity in animals that were tested in the behavioral experiments. Repeated administration of 1.0 mg/kg pimozide induced tremulous jaw movements and increased ventrolateral striatal c-Fos expression, while administration of 20.0 mg/kg of the atypical antipsychotic quetiapine did not. The tremulous jaw movements induced by pimozide were significantly reduced by co-administration of either the adenosine A(2A) antagonist KW 6002 or the muscarinic antagonist tropicamide. Pimozide-induced increases in ventrolateral striatal c-Fos expression were reduced by a behaviorally effective dose of KW 6002, but c-Fos expression in pimozide-treated rats was actually increased by tropicamide. These results indicate that two different drug manipulations that act to reduce tremulous jaw movements can have different effects on DA antagonist-induced c-Fos expression, suggesting that adenosine A(2A) antagonism and muscarinic receptor antagonism exert their motor effects by acting on different striatal circuits. Topics: Adenosine A2 Receptor Antagonists; Animals; Antipsychotic Agents; Biomarkers; Corpus Striatum; Disease Models, Animal; Dopamine D2 Receptor Antagonists; Dose-Response Relationship, Drug; Drug Interactions; Male; Masticatory Muscles; Muscarinic Antagonists; Pimozide; Proto-Oncogene Proteins c-fos; Purines; Rats; Rats, Sprague-Dawley; Receptor, Adenosine A2A; Receptors, Dopamine D2; Tremor; Tropicamide; Up-Regulation | 2009 |
The effects of adenosine A2A receptor antagonists on haloperidol-induced movement disorders in primates.
Adenosine and dopamine interact within the striatum to control striatopallidal output and globus pallidus GABA release. Manipulating striatal adenosine transmission via blockade of the A2A receptor subtype can compensate for the reduced dopamine activity within the striatum that underlies movement disorders such as antipsychotic-induced extrapyramidal syndrome (EPS) and Parkinson's disease (PD). Preclinical studies in the rat have demonstrated that adenosine A2A receptor antagonists can attenuate behaviors reflecting reduced dopamine activity, such as haloperidol-induced catalepsy and hypoactivity.. In the present studies using nonhuman primates, adenosine antagonists were tested against haloperidol-induced EPS in Cebus apella and haloperidol-induced catalepsy in Saimiri sciureus (squirrel monkey). Specifically, the A2A receptor antagonists, SCH 412348 (0.3-30 mg/kg PO) and KW-6002 (3-100 mg/kg PO); the A1/A2A receptor antagonist, caffeine (1-30 mg/kg PO and IM); and the A1 receptor antagonist, DPCPX (3-30 mg/kg PO) were tested in at least one of these models.. SCH 412348 (10-30 mg/kg), KW-6002 (57-100 mg/kg), and caffeine (30 mg/kg) significantly increased the time to EPS onset. Additionally, SCH 412348, KW-6002, and caffeine afforded protection from the onset of EPS for at least 6 h in some of the primates. SCH 412348 (10 mg/kg) and caffeine (10 mg/kg) significantly reduced haloperidol-induced catalepsy. DPCPX produced a very slight attenuation of EPS at 30 mg/kg, but had no effect on catalepsy.. These findings suggest that adenosine A2A receptor antagonists may represent an effective treatment for the motor impairments associated with both antipsychotic-induced EPS and PD. Topics: Adenosine A2 Receptor Antagonists; Animals; Antipsychotic Agents; Caffeine; Catalepsy; Cebus; Corpus Striatum; Disease Models, Animal; Dose-Response Relationship, Drug; Dyskinesia, Drug-Induced; gamma-Aminobutyric Acid; Globus Pallidus; Haloperidol; Neurologic Examination; Purines; Pyrimidines; Receptor, Adenosine A2A; Saimiri; Triazoles; Xanthines | 2008 |
Phenylethyl-substituted pyrimido[2,1-f]purinediones and related compounds: structure-activity relationships as adenosine A(1) and A(2A) receptor ligands.
The synthesis of N-(un)substituted-phenylalkylpyrimido[2,1-f]purinediones was performed starting with 7-(3-chloropropyl)-8-bromotheophylline and 7-(3-chloropropyl)-8-bromo-1,3-dipropylxanthine. Compounds with unsubstituted or substituted ethylene spacer to an aromatic ring were synthesized. Additionally variations in the spacer-elongation of the linker containing more than two atoms, introduction of a double bond or heteroatoms were performed. Physicochemical properties of the synthesized compounds were described. The obtained compounds envisaged as sterically fixed and configurationally stable analogs of 8-styrylxanthines, were evaluated for their affinity to adenosine A(1) and A(2A) receptors, the receptor subtypes that are predominant in the brain. Selected compounds were also investigated for the affinity to the A(2B) and A(3) receptor subtypes. It was stated that phenylethyl pyrimido[2,1-f]purinediones and their analogs with variations of the ethylene spacer (substituted or extended) exhibit micromolar or submicromolar affinity for A(2A) ARs (adenosine receptors); for example compound 2Ac with p-hydroxy substituent displayed a K(i) value of 0.23 microM at the rat A(2A) receptor. In comparison to the previously obtained phenyl and benzyl pyrimido[2,1-f]purinediones compounds with a shorter spacer, phenethyl derivatives were optimal for A(2A) AR. The kind of substituent at the aromatic ring was important for the affinity. Oxygen and nitrogen atoms in the spacer resulted frequently in a slight decrease of the A(2A) AR affinity, introduction of more heteroatoms into the spacer-in carbamates-caused distinctly negative effect on the activity. In this series of compounds more frequently the adenosine A(1) activity was observed, also in submicromolar range as for dipropyl derivative 2Ba with K(i) value of 0.62 microM at the rat A(2A) AR. 3D-QSAR models were developed for the compounds presented in this paper as well as in the previous publications showing activity at adenosine A(1) and A(2A) ARs. It was concluded that for the activity at adenosine A(1) and A(2A) receptors lipophilicity, steric effects along with the molecule's electrostatic surface properties had greatest value. Chosen compounds were evaluated in vivo as anticonvulsants in MES, scMet tests and examined for neurotoxicity. Contrary to previously obtained phenyl and benzyl pyrimido[2,1-f]purinediones, all tested compounds were inactive as anticonvulsants. Topics: Animals; Anticonvulsants; Binding Sites; Computer Simulation; Crystallography, X-Ray; Disease Models, Animal; Dose-Response Relationship, Drug; Injections, Intraperitoneal; Ligands; Male; Mice; Models, Chemical; Models, Molecular; Molecular Structure; Purines; Receptor, Adenosine A1; Receptors, Adenosine A2; Stereoisomerism; Structure-Activity Relationship | 2007 |
Pharmacological validation of a mouse model of l-DOPA-induced dyskinesia.
Dyskinesia (abnormal involuntary movements) is a common complication of l-DOPA pharmacotherapy in Parkinson's disease, and is thought to depend on abnormal cell signaling in the basal ganglia. Dopamine (DA) denervated mice can exhibit behavioral and cellular signs of dyskinesia when they are treated with l-DOPA, but the clinical relevance of this animal model remains to be established. In this study, we have examined the pharmacological profile of l-DOPA-induced abnormal involuntary movements (AIMs) in the mouse. C57BL/6 mice sustained unilateral injections of 6-hydroxydopamine (6-OHDA) in the striatum. The animals were treated chronically with daily doses of l-DOPA that were sufficient to ameliorate akinetic features without inducing overt signs of dyskinesia upon their first administration. In parallel, other groups of mice were treated with antiparkinsonian agents that do not induce dyskinesia when administered de novo, that is, the D2/D3 agonist ropinirole, and the adenosine A2a antagonist KW-6002. During 3 weeks of treatment, l-DOPA-treated mice developed AIMs affecting the head, trunk and forelimb on the side contralateral to the lesion. These movements were not expressed by animals treated with ropinirole or KW-6002 at doses that improved forelimb akinesia. The severity of l-DOPA-induced rodent AIMs was significantly reduced by the acute administration of compounds that have been shown to alleviate l-DOPA-induced dyskinesia both in parkinsonian patients and in rat and monkey models of Parkinson's disease (amantadine, -47%; buspirone, -46%; riluzole, -33%). The present data indicate that the mouse AIMs are indeed a functional equivalent of l-DOPA-induced dyskinesia. Topics: Adenosine A2 Receptor Agonists; Adrenergic Agents; Amantadine; Animals; Antiparkinson Agents; Basal Ganglia; Buspirone; Disease Models, Animal; Disease Progression; Dopamine Agonists; Drug Administration Schedule; Dyskinesia, Drug-Induced; Indoles; Levodopa; Male; Mice; Mice, Inbred C57BL; Oxidopamine; Parkinsonian Disorders; Purines; Receptor, Adenosine A2A; Receptors, Dopamine D2; Reproducibility of Results; Riluzole; Treatment Outcome | 2005 |
Interactions between metabotropic glutamate 5 and adenosine A2A receptors in normal and parkinsonian mice.
Evidence for heteromeric receptor complexes comprising adenosine A2A and metabotropic glutamate 5 (mGlu5) receptors in striatum has raised the possibility of synergistic interactions between striatal A2A and mGlu5 receptors. We investigated the role of striatal A2A receptors in the locomotor stimulant and antiparkinsonian properties of mGlu5 antagonists using complementary pharmacologic and genetic approaches. Locomotion acutely stimulated by the mGlu5 antagonist [2-methyl-6-(phenylethynyl)-pyridine (MPEP)] was absent in mGlu5 knock-out (KO) mice and was potentiated by an A2A antagonist KW-6002 [(E)-1,3-diethyl-8-(3,4-dimethoxystyryl)-7-methylxanthine], both in normal and in dopamine-depleted (reserpinized) mice. Conversely, the MPEP-induced motor response was markedly attenuated in single and double A2A and D2 receptor KO mice. In contrast, motor stimulation by a D1 dopamine agonist was not attenuated in the KO mice. The A2A receptor dependence of MPEP-induced motor stimulation was investigated further using a postnatal forebrain-specific conditional (Cre/loxP system) KO of the A2A receptor. MPEP loses the ability to stimulate locomotion in conditional KO mice, suggesting that this mGlu5 antagonist effect requires the postdevelopmental action of striatal A2A receptors. The potentiation of mGlu5 antagonist-induced motor stimulation by an A2A antagonist and its dependence on both D2 and forebrain A2A receptors highlight the functional interdependence of these receptors. These data also strengthen a rationale for pursuing a combinational drug strategy for enhancing the antiparkinsonian effects of A2A and mGlu5 antagonists. Topics: 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine; Analysis of Variance; Animals; Animals, Newborn; Behavior, Animal; Blotting, Western; Disease Models, Animal; Dopamine Agonists; Dose-Response Relationship, Drug; Drug Synergism; Excitatory Amino Acid Antagonists; Locomotion; Mice; Mice, Inbred C57BL; Mice, Knockout; Motor Activity; Parkinson Disease; Purines; Pyridines; Receptor, Adenosine A2A; Receptor, Metabotropic Glutamate 5; Receptors, Dopamine D2; Receptors, Metabotropic Glutamate; Time Factors | 2005 |
Adenosine A(2A) receptor-mediated modulation of GABA and glutamate release in the output regions of the basal ganglia in a rodent model of Parkinson's disease.
A target neuron of adenosine A(2A) receptor antagonists to exert anti-parkinsonian activities has been currently identified to be, at least in part, striatopallidal medium spiny neurons (MSNs). In the present study, we determine whether A(2A) receptor-mediated modulation is associated with changes in the release of GABA and glutamate in the substantia nigra pars reticulata (SNr), an output structure of the whole basal ganglia network, using in vivo microdialysis in a rat Parkinson's disease (PD) model. In 6-hydroxydopamine (OHDA)-lesioned rats compared with normal rats, basal extracellular GABA levels in the SNr show no change, whereas basal glutamate levels are significantly increased. Oral administration of the A(2A) receptor-selective antagonist (E-1,3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1-H-purine-2,6-dion (KW-6002) to 6-OHDA-lesioned rats at 1 mg/kg caused a marked and sustained increase of GABA and glutamate levels in the SNr. The increase of nigral glutamate by KW-6002 was abolished by a kainic acid-induced lesion of the globus pallidus (GP) or subthalamic nucleus (STN) in 6-OHDA-lesioned rats, whereas the increase of nigral GABA was completely blocked by the GP-lesion but only partially blocked by the STN-lesion. These results indicate that changes in neurotransmitter release in the SNr brought about by KW-6002 are largely attributable to blockade of A(2A) receptor-mediated modulation of striatopallidal MSNs. Thus, these actions of KW-6002 on striatopallidal MSNs may be the main mechanism for ameliorating PD by A(2A) antagonists. Topics: Adenosine A2 Receptor Antagonists; Animals; Basal Ganglia; Denervation; Disease Models, Animal; Efferent Pathways; Extracellular Fluid; gamma-Aminobutyric Acid; Globus Pallidus; Glutamic Acid; Male; Models, Neurological; Neostriatum; Neurons; Oxidopamine; Parkinsonian Disorders; Purines; Rats; Rats, Sprague-Dawley; Receptor, Adenosine A2A; Substantia Nigra | 2004 |
Cellular and behavioural effects of the adenosine A2a receptor antagonist KW-6002 in a rat model of l-DOPA-induced dyskinesia.
We have examined the ability of KW-6002, an adenosine A2a antagonist, to modulate the dyskinetic effects of L-DOPA in 6-hydroxydopamine-lesioned rats. In animals rendered dyskinetic by a previous course of L-DOPA treatment, KW-6002 did not elicit any abnormal involuntary movements on its own, but failed to reduce the severity of dyskinesia when coadministered with L-DOPA. A second experiment was undertaken in order to study the effects of KW-6002 in L-DOPA-naive rats. Thirty-five animals were allotted to four groups to receive a 21-day treatment with: (i) KW-6002 (10 mg/kg/day); (ii) L-DOPA (6 mg/kg/day) i.p.; (iii) KW-6002 plus L-DOPA (same doses as above) or (iv) vehicle. Chronic treatment with KW-6002-only produced a significant relief of motor disability in the rotarod test in the absence of any abnormal involuntary movements. Combined treatment with L-DOPA and KW-6002 improved rotarod performance to a significantly higher degree than did each of the two drugs alone. However, this combined treatment induced dyskinesia to about the same degree as did L-DOPA alone. In situ hybridization histochemistry showed that KW-6002 treatment alone caused an approximately 20% reduction in the striatal levels of preproenkephalin mRNA, whereas neither the coadministration of KW-6002 and L-DOPA nor L-DOPA alone significantly altered the expression of this transcript in the dopamine-denervated striatum. Either alone or in combination with L-DOPA, KW-6002 did not have any modulatory effect on prodynorphin mRNA expression or FosB/DeltaFosB-like immunoreactivity in the dopamine-denervated striatum. These results show that monotreatment with an adenosine A2a receptor antagonist can relieve motor disability without inducing behavioural and cellular signs of dyskinesia in rats with 6-hydroxydopamine lesions. Cotreatment with KW-6002 and L-DOPA potentiates the therapeutic effect but not the dyskinesiogenic potential of the latter drug. Topics: Animals; Behavior, Animal; Corpus Striatum; Disease Models, Animal; Drug Therapy, Combination; Dyskinesia, Drug-Induced; Enkephalins; Female; Levodopa; Motor Activity; Oxidopamine; Parkinsonian Disorders; Protein Precursors; Proto-Oncogene Proteins c-fos; Purinergic P1 Receptor Antagonists; Purines; Rats; Rats, Sprague-Dawley; Receptor, Adenosine A2A; RNA, Messenger; Treatment Outcome | 2003 |
A2A receptors in neuroprotection of dopaminergic neurons.
Topics: Adenosine A2 Receptor Antagonists; Animals; Caffeine; Disease Models, Animal; Dopamine; Dose-Response Relationship, Drug; Enzyme Inhibitors; Female; Humans; Male; Neurons; Neuroprotective Agents; Parkinson Disease; Purines; Pyrimidines; Receptor, Adenosine A2A; Sex Factors; Triazoles | 2003 |
Monoamine oxidase B inhibition and neuroprotection: studies on selective adenosine A2A receptor antagonists.
The principal therapeutic agents used in the management of Parkinson's disease (PD) enhance nigrostriatal dopaminergic flux through either replenishment of depleted dopamine stores or the action of dopaminergic agonists. Adenosine A2A receptor antagonists (e.g., KW-6002) may provide symptomatic relief in PD and perhaps also may display neuroprotective properties based on studies in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of nigrostriatal neurodegeneration. A second class of compounds that is neuroprotective in the MPTP model comprises inhibitors of the outer mitochondrial flavoenzyme monoamine oxidase B (MAO B), one of the two forms of MAO that regulate levels of brain neurotransmitter substances, including dopamine. In this article, data are presented that document the overlapping A2A antagonist and MAO B inhibitory properties of several 2-styrylxanthinyl derivatives. A limited structure-activity analysis of these compounds and structurally related analogs is provided. The results raise the possibility that a single structure may offer the combined benefits of two pharmacologic strategies, each with symptomatic and potential neuroprotective benefits, for the management of PD. Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Adenosine A2 Receptor Antagonists; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; In Vitro Techniques; Mice; Mitochondria, Liver; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Neurodegenerative Diseases; Neuroprotective Agents; Papio; Purines; Structure-Activity Relationship | 2003 |
Adenosine A2A receptors in neuroadaptation to repeated dopaminergic stimulation: implications for the treatment of dyskinesias in Parkinson's disease.
The A2A receptor has recently attracted considerable interest as a potential target for Parkinson's disease (PD) therapy based on the motor-enhancing and neuroprotective effects of A2A antagonists in animal models of PD. The unique neuronal localization of the adenosine A2A receptor in the basal ganglia and its extensive interactions with dopaminergic and glutamatergic systems led the authors to investigate a potential role of the A2A receptor in the development of behavioral sensitization in response to repeated dopaminergic stimulation. Because dopamine-induced behavioral sensitization shares several neurochemical and behavioral features with dyskinesia, characterizing this novel aspect of A2A receptor function may enhance understanding and management of dyskinesia in PD. Recent studies from several laboratories suggest that the A2A receptor may be an important mediator of maladaptive changes in response to long-term dopamine stimulation. The authors summarize their investigation of the role of A2A receptors in two paradigms of behavioral sensitization elicited by daily treatment with either L-dopa in hemiparkinsonian mice or amphetamine in naive mice. The results demonstrate that the A2A receptor is required for the development of behavioral sensitization in response to repeated L-dopa treatment in hemiparkinsonian mice and repeated amphetamine administration in normal mice. Together with pharmacologic studies, these results raise the possibility that the maladaptive dyskinetic responses to long-term L-dopa management of PD may be attenuated by A2A receptor blockade. Potential presynaptic, postsynaptic (cellular), and trans-synaptic (network) mechanisms are discussed. Topics: Adenosine A2 Receptor Antagonists; Amphetamine; Animals; Antiparkinson Agents; Behavior, Animal; Disease Models, Animal; Dopamine; Dopamine Agonists; Drug Tolerance; Dyskinesia, Drug-Induced; Humans; Levodopa; Mice; Mice, Knockout; Neurons; Neuroprotective Agents; Oxidopamine; Parkinsonian Disorders; Purines; Pyrimidines; Receptor, Adenosine A2A; Synapses; Triazoles | 2003 |
Adenosine A2A receptors and depression.
Adenosine and its analogues have been shown to induce "behavioral despair" in animal models believed to be relevant to depression. Recent data have shown that selective adenosine A2A receptor antagonists (e.g., SCH 58261, ZM241385, and KW6002) or genetic inactivation of the receptor was effective in reversing signs of behavioral despair in the tail suspension and forced swim tests, two screening procedures predictive of antidepressant activity. A2A antagonists were active in the tail suspension test using either mice previously screened for having high immobility scores or mice that were selectively bred for their spontaneous "helplessness" in this test. At stimulant doses, caffeine, a nonselective A1/A2A receptor antagonist, was effective in the forced swim test. The authors have hypothesized that the antidepressant-like effect of selective A2A antagonists is linked to an interaction with dopaminergic transmission, possibly in the frontal cortex. In support of this idea, administration of the dopamine D2 receptor antagonist haloperidol prevented antidepressant-like effects elicited by SCH 58261 in the forced swim test (putatively involving cortex), whereas it had no effect on stimulant motor effects of SCH 58261 (putatively linked to ventral striatum). The interaction profile of caffeine with haloperidol differed markedly from that of SCH 58261 in the forced swim and motor activity tests. Therefore, a clear-cut antidepressant-like effect could not be ascribed to caffeine. In conclusion, available data support the proposition that a selective blockade of the adenosine A2A receptor may be an interesting target for the development of effective antidepressant agents. Topics: Adenosine; Adenosine A2 Receptor Antagonists; Animals; Antidepressive Agents; Behavior, Animal; Caffeine; Depression; Disease Models, Animal; Dopamine Antagonists; Drug Interactions; Haloperidol; Mice; Mice, Knockout; Motor Activity; Neurotransmitter Agents; Parkinsonian Disorders; Purines; Pyrimidines; Receptor, Adenosine A2A; Triazines; Triazoles | 2003 |
Discovery of nonxanthine adenosine A2A receptor antagonists for the treatment of Parkinson's disease.
During a program to investigate the biochemical basis of side effects associated with the antimalarial drug mefloquine, the authors made the unexpected discovery that the (-)-(R,S)-enantiomer of the drug is a potent adenosine A2A receptor antagonist. Although the compound was ineffective in in vivo animal models of central adenosine receptor function, it provided a unique nonxanthine adenosine A2A receptor antagonist lead structure and encouraged the initiation of a medicinal chemistry program to develop novel adenosine A2A antagonists for the management of Parkinson's disease (PD). The authors have synthesized and screened more than 2,000 chemically diverse and novel adenosine A(2A antagonists. Early examples from two distinct chemical series are the thieno[3,2-dy]pyrimidine VER-6623 and the purine compounds VER-6947 and VER-7835, which have high affinity at adenosine A2A receptors (K(i) values 1.4, 1.1, and 1.7 nmol/L, respectively) and act as competitive antagonists. In particular, VER-6947 and VER-7835 demonstrate potent in vivo activity reversing the locomotor deficit caused by the D2 receptor antagonist haloperidol, with minimum effective doses comparable with that of KW6002 (0.3 to 1 mg/kg). In conclusion, the authors have discovered potent, selective, and in vivo active nonxanthine adenosine A2A antagonists that have considerable promise as a new therapy for PD. Topics: Adenosine; Adenosine A2 Receptor Antagonists; Animals; Antiparkinson Agents; Binding, Competitive; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Design; Drug Evaluation, Preclinical; Humans; Ligands; Mefloquine; Mice; Motor Activity; Neuroprotective Agents; Parkinsonian Disorders; Phenethylamines; Purines; Pyrimidines; Radioligand Assay; Rats; Triazines; Triazoles | 2003 |
Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson's disease.
Adenosine A2A receptors are abundant in the caudate-putamen and involved in the motor control in several species. In MPTP-treated monkeys, A2A receptor-blockade with an antagonist alleviates parkinsonian symptoms without provoking dyskinesia, suggesting this receptor may offer a new target for the antisymptomatic therapy of Parkinson's disease. In the present study, a significant neuroprotective effect of A2A receptor antagonists is shown in experimental models of Parkinson's disease. Oral administration of A2A receptor antagonists protected against the loss of nigral dopaminergic neuronal cells induced by 6-hydroxydopamine in rats. A2A antagonists also prevented the functional loss of dopaminergic nerve terminals in the striatum and the ensuing gliosis caused by MPTP in mice. The neuroprotective property of A2A receptor antagonists may be exerted by altering the packaging of these neurotoxins into vesicles, thus reducing their effective intracellular concentration. We therefore conclude that the adenosine A2A receptor may provide a novel target for the long-term medication of Parkinson's disease, because blockade of this receptor exerts both acutely antisymptomatic and chronically neuroprotective activities. Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; 1-Methyl-4-phenylpyridinium; Animals; Antineoplastic Agents; Disease Models, Animal; Dopamine; Dopamine Agents; Gliosis; Herbicides; Male; Nerve Degeneration; Neurons; Neuroprotective Agents; Oxidopamine; Parkinsonian Disorders; PC12 Cells; Purinergic P1 Receptor Antagonists; Purines; Rats; Rats, Sprague-Dawley; Receptor, Adenosine A2A; Sympatholytics; Tritium | 2002 |
Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson's disease.
Recent epidemiological studies have established an association between the common consumption of coffee or other caffeinated beverages and a reduced risk of developing Parkinson's disease (PD). To explore the possibility that caffeine helps prevent the dopaminergic deficits characteristic of PD, we investigated the effects of caffeine and the adenosine receptor subtypes through which it may act in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin model of PD. Caffeine, at doses comparable to those of typical human exposure, attenuated MPTP-induced loss of striatal dopamine and dopamine transporter binding sites. The effects of caffeine were mimicked by several A(2A) antagonists (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH 58261), 3,7-dimethyl-1-propargylxanthine, and (E)-1,3-diethyl-8 (KW-6002)-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione) (KW-6002) and by genetic inactivation of the A(2A) receptor, but not by A(1) receptor blockade with 8-cyclopentyl-1,3-dipropylxanthine, suggesting that caffeine attenuates MPTP toxicity by A(2A) receptor blockade. These data establish a potential neural basis for the inverse association of caffeine with the development of PD, and they enhance the potential of A(2A) antagonists as a novel treatment for this neurodegenerative disease. Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; 3,4-Dihydroxyphenylacetic Acid; Animals; Caffeine; Catechols; Corpus Striatum; Disease Models, Animal; Dopamine; Dose-Response Relationship, Drug; Immunity, Innate; Injections, Intraperitoneal; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Neuroprotective Agents; Parkinsonian Disorders; Purinergic P1 Receptor Antagonists; Purines; Pyrimidines; Receptor, Adenosine A2A; Receptors, Purinergic P1; Theobromine; Triazoles; Xanthines | 2001 |
Adenosine A2A receptor antagonists are potential antidepressants: evidence based on pharmacology and A2A receptor knockout mice.
1. Adenosine, an ubiquitous neuromodulator, and its analogues have been shown to produce 'depressant' effects in animal models believed to be relevant to depressive disorders, while adenosine receptor antagonists have been found to reverse adenosine-mediated 'depressant' effect. 2. We have designed studies to assess whether adenosine A2A receptor antagonists, or genetic inactivation of the receptor would be effective in established screening procedures, such as tail suspension and forced swim tests, which are predictive of clinical antidepressant activity. 3. Adenosine A2A receptor knockout mice were found to be less sensitive to 'depressant' challenges than their wildtype littermates. Consistently, the adenosine A2A receptor blockers SCH 58261 (1 - 10 mg kg(-1), i.p.) and KW 6002 (0.1 - 10 mg kg(-1), p.o.) reduced the total immobility time in the tail suspension test. 4. The efficacy of adenosine A2A receptor antagonists in reducing immobility time in the tail suspension test was confirmed and extended in two groups of mice. Specifically, SCH 58261 (1 - 10 mg kg(-1)) and ZM 241385 (15 - 60 mg kg(-1)) were effective in mice previously screened for having high immobility time, while SCH 58261 at 10 mg kg(-1) reduced immobility of mice that were selectively bred for their spontaneous 'helplessness' in this assay. 5. Additional experiments were carried out using the forced swim test. SCH 58261 at 10 mg kg(-1) reduced the immobility time by 61%, while KW 6002 decreased the total immobility time at the doses of 1 and 10 mg kg(-1) by 75 and 79%, respectively. 6. Administration of the dopamine D2 receptor antagonist haloperidol (50 - 200 microg kg(-1) i.p.) prevented the antidepressant-like effects elicited by SCH 58261 (10 mg kg(-1) i.p.) in forced swim test whereas it left unaltered its stimulant motor effects. 7. In conclusion, these data support the hypothesis that A2A receptor antagonists prolong escape-directed behaviour in two screening tests for antidepressants. Altogether the results support the hypothesis that blockade of the adenosine A2A receptor might be an interesting target for the development of effective antidepressant agents. Topics: Animals; Antidepressive Agents; Behavior, Animal; Blepharoptosis; Disease Models, Animal; Dopamine Antagonists; Dopamine D2 Receptor Antagonists; Dose-Response Relationship, Drug; Female; Haloperidol; Immobilization; Male; Mice; Mice, Knockout; Motor Activity; Purinergic P1 Receptor Antagonists; Purines; Pyrimidines; Receptor, Adenosine A2A; Receptors, Dopamine D2; Receptors, Purinergic P1; Reserpine; Swimming; Time Factors; Triazoles | 2001 |
Combined use of the adenosine A(2A) antagonist KW-6002 with L-DOPA or with selective D1 or D2 dopamine agonists increases antiparkinsonian activity but not dyskinesia in MPTP-treated monkeys.
The novel selective adenosine A(2A) receptor antagonist KW-6002 improves motor disability in MPTP-treated parkinsonian marmosets without provoking dyskinesia. In this study we have investigated whether KW-6002 in combination with l-DOPA or selective D1 or D2 dopamine receptor agonists enhances antiparkinsonian activity in MPTP-treated common marmosets. Combination of KW-6002 with the selective dopamine D2 receptor agonist quinpirole or the D1 receptor agonist SKF80723 produced an additive improvement in motor disability. Coadministration of KW-6002 with a low dose of L-DOPA also produced an additive improvement in motor disability, and increased locomotor activity. The ability of KW-6002 to enhance antiparkinsonian activity was more marked with L-DOPA and quinpirole than with the D1 agonist. However, despite producing an enhanced antiparkinsonian response KW-6002 did not exacerbate L-DOPA-induced dyskinesia in MPTP-treated common marmosets previously primed to exhibit dyskinesia by prior exposure to L-DOPA. Selective adenosine A(2A) receptor antagonists, such as KW-6002, may be one means of reducing the dosage of L-DOPA used in treating Parkinson's disease and are potentially a novel approach to treating the illness both as monotherapy and in combination with dopaminergic drugs. Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Administration, Oral; Animals; Callithrix; Carbidopa; Disease Models, Animal; Drug Synergism; Drug Therapy, Combination; Dyskinesia, Drug-Induced; Female; Injections, Intraperitoneal; Levodopa; Male; Motor Activity; Parkinson Disease, Secondary; Purinergic P1 Receptor Antagonists; Purines; Quinpirole; Receptor, Adenosine A2A; Receptors, Dopamine D1; Receptors, Dopamine D2 | 2000 |