isorhapontigenin has been researched along with Urinary-Bladder-Neoplasms* in 9 studies
9 other study(ies) available for isorhapontigenin and Urinary-Bladder-Neoplasms
Article | Year |
---|---|
Induction of RAC1 protein translation and MKK7/JNK-dependent autophagy through dicer/miR-145/SOX2/miR-365a axis contributes to isorhapontigenin (ISO) inhibition of human bladder cancer invasion.
Although our previous studies have identified that isorhapontigenin (ISO) is able to initiate autophagy in human bladder cancer (BC) cells by activating JNK/C-Jun/SESN2 axis and possesses an inhibitory effect on BC cell growth, association of autophagy directly with inhibition of BC invasion has never been explored. Also, upstream cascade responsible for ISO activating JNK remains unknown. Thus, we explored both important questions in the current study and discovered that ISO treatment initiated RAC1 protein translation, and its downstream kinase MKK7/JNK phosphorylation/activation, and in turn promoted autophagic responses in human BC cells. Inhibition of autophagy abolished ISO inhibition of BC invasion, revealing that autophagy inhibition was crucial for ISO inhibition of BC invasion. Consistently, knockout of RAC1 also attenuated induction of autophagy and inhibition of BC invasion by ISO treatment. Mechanistic studies showed that upregulation of RAC1 translation was due to ISO inhibition of miR-365a transcription, which reduced miR-365a binding to the 3'-UTR of RAC1 mRNA. Further study indicated that inhibition of miR-365a transcription was caused by downregulation of its transcription factor SOX2, while ISO-promoted Dicer protein translation increased miR-145 maturation, and consequently downregulating SOX2 expression. These findings not only provide a novel insight into the understanding association of autophagy induction with BC invasion inhibition by ISO, but also identify an upstream regulatory cascade, Dicer/miR145/SOX2/miR365a/RAC1, leading to MKK7/JNKs activation and autophagy induction. Topics: 3' Untranslated Regions; Autophagy; Cell Line, Tumor; DEAD-box RNA Helicases; Gene Expression Regulation, Neoplastic; Humans; MicroRNAs; Nuclear Proteins; Phosphorylation; Protein Biosynthesis; rac1 GTP-Binding Protein; Ribonuclease III; Sestrins; SOXB1 Transcription Factors; Stilbenes; Urinary Bladder Neoplasms | 2022 |
Isorhapontigenin (ISO) inhibits EMT through FOXO3A/METTL14/VIMENTIN pathway in bladder cancer cells.
Epithelial mesenchymal transition (EMT) is highly correlated with metastasis during cancer development. Although previous studies have revealed that ISO is able to inhibit cancer cell invasion and stem-cell properties, little is known about the effects of ISO on EMT markers. The present study explores the potential regulation of ISO on EMT, leading to the inhibition of migration and invasion of bladder cancer cells. We found that ISO inhibited Vimentin, one of the EMT markers, in the invasive bladder cancer cell lines U5637 and T24T. ISO reduced Vimentin protein level by increasing the expression of METTL14. On the other hand, ISO upregulated the METTL14 mRNA by activating the transcription factor FOXO3a. The results demonstrate that ISO inhibits invasion by affecting the EMT marker and offer a novel insight into understanding the upregulation of METTL14 by ISO. Topics: Cell Line, Tumor; Cell Movement; Cell Proliferation; Epithelial-Mesenchymal Transition; Forkhead Box Protein O3; Gene Expression Regulation, Neoplastic; Humans; Methyltransferases; Neoplasm Invasiveness; Signal Transduction; Stilbenes; Urinary Bladder Neoplasms; Vimentin | 2021 |
Isorhapontigenin (ISO) inhibits stem cell-like properties and invasion of bladder cancer cell by attenuating CD44 expression.
Cancer stem cells (CSC) are highly associated with poor prognosis in cancer patients. Our previous studies report that isorhapontigenin (ISO) down-regulates SOX2-mediated cyclin D1 induction and stem-like cell properties in glioma stem-like cells. The present study revealed that ISO could inhibit stem cell-like phenotypes and invasivity of human bladder cancer (BC) by specific attenuation of expression of CD44 but not SOX-2, at both the protein transcription and degradation levels. On one hand, ISO inhibited cd44 mRNA expression through decreases in Sp1 direct binding to its promoter region-binding site, resulting in attenuation of its transcription. On the other hand, ISO also down-regulated USP28 expression, which in turn reduced CD44 protein stability. Further studies showed that ISO treatment induced miR-4295, which specific bound to 3'-UTR activity of usp28 mRNA and inhibited its translation and expression, while miR-4295 induction was mediated by increased Dicer protein to enhance miR-4295 maturation upon ISO treatment. Our results provide the first evidence that ISO has a profound inhibitory effect on human BC stem cell-like phenotypes and invasivity through the mechanisms distinct from those previously noted in glioma stem-like cells. Topics: 3' Untranslated Regions; Binding Sites; Cell Line, Tumor; Cyclin D1; Down-Regulation; Gene Expression Regulation, Neoplastic; Humans; Hyaluronan Receptors; MicroRNAs; Neoplastic Stem Cells; Promoter Regions, Genetic; RNA, Messenger; SOXB1 Transcription Factors; Stem Cells; Stilbenes; Transcription, Genetic; Ubiquitin Thiolesterase; Urinary Bladder Neoplasms | 2020 |
Transcriptional and post-transcriptional upregulation of p27 mediates growth inhibition of isorhapontigenin (ISO) on human bladder cancer cells.
There are few approved drugs available for the treatment of muscle-invasive bladder cancer (MIBC). Recently, we have demonstrated that isorhapontigenin (ISO), a new derivative isolated from the Chinese herb Gnetum cleistostachyum, effectively induces cell-cycle arrest at the G0/G1 phase and inhibits anchorage-independent cell growth through the miR-137/Sp1/cyclin D1 axis in human MIBC cells. Herein, we found that treatment of bladder cancer (BC) cells with ISO resulted in a significant upregulation of p27, which was also observed in ISO-treated mouse BCs that were induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Importantly, knockdown of p27 caused a decline in the ISO-induced G0-G1 growth arrest and reversed ISO suppression of anchorage-independent growth in BC cells. Mechanistic studies revealed that ISO promoted p27 expression at mRNA transcription level through increasing direct binding of forkhead box class O1 (FOXO1) to its promoter, while knockdown of FOXO1 attenuated ISO inhibition of BC cell growth. On the other hand, ISO upregulated the 3'-untranslated region (3'-UTR) activity of p27, which was accompanied by a reduction of miR-182 expression. In line with these observations, ectopic expression of miR-182 significantly blocked p27 3'-UTR activity, whereas mutation of the miR-182-binding site at p27 mRNA 3'-UTR effectively reversed this inhibition. Accordingly, ectopic expression of miR-182 also attenuated ISO upregulation of p27 expression and impaired ISO inhibition of BC cell growth. Our results not only provide novel insight into understanding of the underlying mechanism related to regulation of MIBC cell growth but also identify new roles and mechanisms underlying ISO inhibition of BC cell growth. Topics: Animals; Cell Line, Tumor; Cell Proliferation; Cyclin-Dependent Kinase Inhibitor p27; Forkhead Box Protein O1; Gene Expression Regulation, Neoplastic; Humans; Mice; MicroRNAs; RNA Processing, Post-Transcriptional; Stilbenes; Transcriptional Activation; Up-Regulation; Urinary Bladder Neoplasms | 2018 |
Induction of miR-137 by Isorhapontigenin (ISO) Directly Targets Sp1 Protein Translation and Mediates Its Anticancer Activity Both In Vitro and In Vivo.
Our recent studies found that isorhapontigenin (ISO) showed a significant inhibitory effect on human bladder cancer cell growth, accompanied with cell-cycle G0-G1 arrest as well as downregulation of Cyclin D1 expression at transcriptional level via inhibition of Sp1 transactivation in bladder cancer cells. In the current study, the potential ISO inhibition of bladder tumor formation has been explored in a xenograft nude mouse model, and the molecular mechanisms underlying ISO inhibition of Sp1 expression and anticancer activities have been elucidated both in vitro and in vivo. Moreover, the studies demonstrated that ISO treatment induced the expression of miR-137, which in turn suppressed Sp1 protein translation by directly targeting Sp1 mRNA 3'-untranslated region (UTR). Similar to ISO treatment, ectopic expression of miR-137 alone led to G0-G1 cell growth arrest and inhibition of anchorage-independent growth in human bladder cancer cells, which could be completely reversed by overexpression of GFP-Sp1. The inhibition of miR-137 expression attenuated ISO-induced inhibition of Sp1/Cyclin D1 expression, induction of G0-G1 cell growth arrest, and suppression of cell anchorage-independent growth. Taken together, our studies have demonstrated that miR-137 induction by ISO targets Sp1 mRNA 3'-UTR and inhibits Sp1 protein translation, which consequently results in reduction of Cyclin D1 expression, induction of G0-G1 growth arrest, and inhibition of anchorage-independent growth in vitro and in vivo. Our results have provided novel insights into understanding the anticancer activity of ISO in the therapy of human bladder cancer. Topics: 3' Untranslated Regions; Animals; Base Sequence; Binding Sites; Cell Line, Tumor; Cell Proliferation; Disease Models, Animal; Ectopic Gene Expression; G1 Phase Cell Cycle Checkpoints; Gene Expression Regulation, Neoplastic; Humans; Mice; MicroRNAs; Protein Biosynthesis; RNA Interference; RNA, Messenger; Sp1 Transcription Factor; Stilbenes; Tumor Burden; Urinary Bladder Neoplasms; Xenograft Model Antitumor Assays | 2016 |
Isorhapontigenin (ISO) Inhibits Invasive Bladder Cancer Formation In Vivo and Human Bladder Cancer Invasion In Vitro by Targeting STAT1/FOXO1 Axis.
Although our most recent studies have identified Isorhapontigenin (ISO), a novel derivative of stilbene that isolated from a Chinese herb Gnetum cleistostachyum, for its inhibition of human bladder cancer growth, nothing is known whether ISO possesses an inhibitory effect on bladder cancer invasion. Thus, we addressed this important question in current study and discovered that ISO treatment could inhibit mouse-invasive bladder cancer development following bladder carcinogen N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) exposure in vivo We also found that ISO suppressed human bladder cancer cell invasion accompanied by upregulation of the forkhead box class O 1 (FOXO1) mRNA transcription in vitro Accordingly, FOXO1 was profoundly downregulated in human bladder cancer tissues and was negatively correlated with bladder cancer invasion. Forced expression of FOXO1 specifically suppressed high-grade human bladder cancer cell invasion, whereas knockdown of FOXO1 promoted noninvasive bladder cancer cells becoming invasive bladder cancer cells. Moreover, knockout of FOXO1 significantly increased bladder cancer cell invasion and abolished the ISO inhibition of invasion in human bladder cancer cells. Further studies showed that the inhibition of Signal transducer and activator of transcription 1 (STAT1) phosphorylation at Tyr701 was crucial for ISO upregulation of FOXO1 transcription. Furthermore, this study revealed that metalloproteinase-2 (MMP-2) was a FOXO1 downstream effector, which was also supported by data obtained from mouse model of ISO inhibition BBN-induced mouse-invasive bladder cancer formation. These findings not only provide a novel insight into the understanding of mechanism of bladder cancer's propensity to invasion, but also identify a new role and mechanisms underlying the natural compound ISO that specifically suppresses such bladder cancer invasion through targeting the STAT1-FOXO1-MMP-2 axis. Cancer Prev Res; 9(7); 567-80. ©2016 AACR. Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cell Movement; Forkhead Box Protein O1; Humans; Interferon-Stimulated Gene Factor 3; Matrix Metalloproteinase 2; Mice; Mice, Inbred C57BL; Neoplasm Invasiveness; Random Allocation; Signal Transduction; Stilbenes; Urinary Bladder Neoplasms | 2016 |
SESN2/sestrin 2 induction-mediated autophagy and inhibitory effect of isorhapontigenin (ISO) on human bladder cancers.
Isorhapontigenin (ISO) is a new derivative of stilbene isolated from the Chinese herb Gnetum cleistostachyum. Our recent studies have revealed that ISO treatment at doses ranging from 20 to 80 μM triggers apoptosis in multiple human cancer cell lines. In the present study, we evaluated the potential effect of ISO on autophagy induction. We found that ISO treatment at sublethal doses induced autophagy effectively in human bladder cancer cells, which contributed to the inhibition of anchorage-independent growth of cancer cells. In addition, our studies revealed that ISO-mediated autophagy induction occurred in a SESN2 (sestrin 2)-dependent and BECN1 (Beclin 1, autophagy related)-independent manner. Furthermore, we identified that ISO treatment induced SESN2 expression via a MAPK8/JNK1 (mitogen-activated protein kinase 8)/JUN-dependent mechanism, in which ISO triggered MAPK8-dependent JUN activation and facilitated the binding of JUN to a consensus AP-1 binding site in the SESN2 promoter region, thereby led to a significant transcriptional induction of SESN2. Importantly, we found that SESN2 expression was dramatically downregulated or even lost in human bladder cancer tissues as compared to their paired adjacent normal tissues. Collectively, our results demonstrate that ISO treatment induces autophagy and inhibits bladder cancer growth through MAPK8-JUN-dependent transcriptional induction of SESN2, which provides a novel mechanistic insight into understanding the inhibitory effect of ISO on bladder cancers and suggests that ISO might act as a promising preventive and/or therapeutic drug against human bladder cancer. Topics: Apoptosis; Apoptosis Regulatory Proteins; Autophagy; Beclin-1; Cell Line, Tumor; Down-Regulation; Drug Design; Drugs, Chinese Herbal; Gene Expression Regulation, Neoplastic; Gnetum; HeLa Cells; Humans; Microscopy, Fluorescence; Mitogen-Activated Protein Kinase 8; Nuclear Proteins; Plant Extracts; Promoter Regions, Genetic; Stilbenes; Transcription Factor AP-1; Urinary Bladder Neoplasms | 2016 |
Cyclin d1 downregulation contributes to anticancer effect of isorhapontigenin on human bladder cancer cells.
Isorhapontigenin (ISO) is a new derivative of stilbene compound that was isolated from the Chinese herb Gnetum Cleistostachyum and has been used for treatment of bladder cancers for centuries. In our current studies, we have explored the potential inhibitory effect and molecular mechanisms underlying isorhapontigenin anticancer effects on anchorage-independent growth of human bladder cancer cell lines. We found that isorhapontigenin showed a significant inhibitory effect on human bladder cancer cell growth and was accompanied with related cell cycle G(0)-G(1) arrest as well as downregulation of cyclin D1 expression at the transcriptional level in UMUC3 and RT112 cells. Further studies identified that isorhapontigenin downregulated cyclin D1 gene transcription via inhibition of specific protein 1 (SP1) transactivation. Moreover, ectopic expression of GFP-cyclin D1 rendered UMUC3 cells resistant to induction of cell-cycle G(0)-G(1) arrest and inhibition of cancer cell anchorage-independent growth by isorhapontigenin treatment. Together, our studies show that isorhapontigenin is an active compound that mediates Gnetum Cleistostachyum's induction of cell-cycle G(0)-G(1) arrest and inhibition of cancer cell anchorage-independent growth through downregulating SP1/cyclin D1 axis in bladder cancer cells. Our studies provide a novel insight into understanding the anticancer activity of the Chinese herb Gnetum Cleistostachyum and its isolate isorhapontigenin. Topics: Animals; Antineoplastic Agents, Phytogenic; Binding Sites; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cyclin D1; Disease Models, Animal; Down-Regulation; Gene Expression Regulation, Neoplastic; Humans; Male; Mice; Promoter Regions, Genetic; Sp1 Transcription Factor; Stilbenes; Transcription, Genetic; Urinary Bladder Neoplasms; Xenograft Model Antitumor Assays | 2013 |
The Chinese herb isolate isorhapontigenin induces apoptosis in human cancer cells by down-regulating overexpression of antiapoptotic protein XIAP.
Although the Chinese herb Gnetum cleistostachyum has been used as a remedy for cancers for hundred years, the active compounds and molecular mechanisms underlying its anti-cancer activity have not been explored. Recently a new derivative of stilbene compound, isorhapontigenin (ISO), was isolated from this Chinese herb. In the present study, we examined the potential of ISO in anti-cancer activity and the mechanisms involved in human cancer cell lines. We found that ISO exhibited significant inhibitory effects on human bladder cancer cell growth that was accompanied by marked apoptotic induction as well as down-regulation of the X-linked inhibitor of apoptosis protein (XIAP). Further studies have shown that ISO down-regulation of XIAP protein expression was only observed in endogenous XIAP, but not in constitutionally exogenously expressed XIAP in the same cells, excluding the possibility of ISO regulating XIAP expression at the level of protein degradation. We also identified that ISO down-regulated XIAP gene transcription via inhibition of Sp1 transactivation. There was no significant effect of ISO on apoptosis and colony formation of cells transfected with exogenous HA-tagged XIAP. Collectively, current studies, for the first time to the best of our knowledge, identify ISO as a major active compound for the anti-cancer activity of G. cleistostachyum by down-regulation of XIAP expression and induction of apoptosis through specific targeting of a SP1 pathway, and cast new light on the treatment of the cancer patients with XIAP overexpression. Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Cell Line, Tumor; Down-Regulation; Drug Screening Assays, Antitumor; Drugs, Chinese Herbal; Gene Expression Regulation, Neoplastic; Gnetum; Humans; Neoplasm Proteins; Proteolysis; Stilbenes; Urinary Bladder Neoplasms; X-Linked Inhibitor of Apoptosis Protein | 2012 |