isoquercitrin and Colonic-Neoplasms

isoquercitrin has been researched along with Colonic-Neoplasms* in 4 studies

Other Studies

4 other study(ies) available for isoquercitrin and Colonic-Neoplasms

ArticleYear
Antitumor effect of isoquercetin on tissue vasohibin expression and colon cancer vasculature.
    Oncotarget, 2022, Volume: 13

    Tumor cells trigger angiogenesis through the expression of angiogenic factors. Vasohibins (VASHs) are a family of peptides that regulate angiogenesis. Flavonoids have antiproliferative antitumor properties; however, few studies have highlighted their antiangiogenic potential. This study evaluated the flavonoid isoquercetin (Q3G) as an antitumor compound related to colon cancer vascularization and regulation of VASH1 and 2. Mice bearing xenogeneic colon cancer (

    Topics: Angiogenic Proteins; Animals; Bevacizumab; Cell Cycle Proteins; Colonic Neoplasms; Mice; Neovascularization, Pathologic; Quercetin; Xenograft Model Antitumor Assays

2022
Cilostazol and enzymatically modified isoquercitrin attenuate experimental colitis and colon cancer in mice by inhibiting cell proliferation and inflammation.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2017, Volume: 100

    We previously reported the anti-inflammatory effects of cilostazol, a selective inhibitor of phosphodiesterase 3, and two antioxidants, enzymatically modified isoquercitrin and α-lipoic acid in a dextran sodium sulphate-induced colitis mouse model. We further examined the chemopreventive effects of these substances in a murine azoxymethane/dextran sodium sulphate -induced colorectal carcinoma model and compared the effects with those of the well-known anticancer natural plant pigment, anthocyanin. In addition, the effects on cell proliferation activity were evaluated in colon cancer cell lines and mucosal epithelial cells in a model of acute dextran sodium sulphate-induced colitis. Cilostazol and enzymatically modified isoquercitrin improved the outcome of azoxymethane/dextran sodium sulphate-induced colorectal cancer along with anthocyanin though inhibiting inflammation and cell proliferation, but the effect of α-lipoic acid was minimal. Inhibition of cell proliferation by cilostazol was confirmed in vitro. In the acute dextran sodium sulphate-induced colitis model, cilostazol and enzymatically modified isoquercitrin prevented the decrease in epithelial proliferative cells. These results indicate that cilostazol and enzymatically modified isoquercitrin first exhibited an anti-dextran sodium sulphate effect at the initial stage of colitis and then showed antitumour effects throughout subsequent inflammation-related cancer developmental stages.

    Topics: Animals; Azoxymethane; Carcinogens; Cell Proliferation; Cilostazol; Colitis; Colonic Neoplasms; Enzyme-Linked Immunosorbent Assay; Female; Immunohistochemistry; Inflammation; Mice; Mice, Inbred BALB C; Organ Size; Quercetin; Tetrazoles; Vasodilator Agents

2017
Isoquercitrin suppresses colon cancer cell growth in vitro by targeting the Wnt/β-catenin signaling pathway.
    The Journal of biological chemistry, 2014, Dec-19, Volume: 289, Issue:51

    Flavonoids are plant-derived polyphenolic molecules that have potential biological effects including anti-oxidative, anti-inflammatory, anti-viral, and anti-tumoral effects. These effects are related to the ability of flavonoids to modulate signaling pathways, such as the canonical Wnt signaling pathway. This pathway controls many aspects of embryonic development and tissue maintenance and has been found to be deregulated in a range of human cancers. We performed several in vivo assays in Xenopus embryos, a functional model of canonical Wnt signaling studies, and also used in vitro models, to investigate whether isoquercitrin affects Wnt/β-catenin signaling. Our data provide strong support for an inhibitory effect of isoquercitrin on Wnt/β-catenin, where the flavonoid acts downstream of β-catenin translocation to the nuclei. Isoquercitrin affects Xenopus axis establishment, reverses double axes and the LiCl hyperdorsalization phenotype, and reduces Xnr3 expression. In addition, this flavonoid shows anti-tumoral effects on colon cancer cells (SW480, DLD-1, and HCT116), whereas exerting no significant effect on non-tumor colon cell (IEC-18), suggesting a specific effect in tumor cells in vitro. Taken together, our data indicate that isoquercitrin is an inhibitor of Wnt/β-catenin and should be further investigated as a potential novel anti-tumoral agent.

    Topics: Active Transport, Cell Nucleus; Animals; Antineoplastic Agents; beta Catenin; Blotting, Western; Body Patterning; Cell Line; Cell Line, Tumor; Cell Movement; Cell Nucleus; Cell Proliferation; Colonic Neoplasms; Early Growth Response Protein 2; Embryo, Nonmammalian; Gene Expression Regulation, Developmental; HCT116 Cells; Humans; Immunohistochemistry; In Situ Hybridization; Lithium Chloride; Quercetin; Reverse Transcriptase Polymerase Chain Reaction; Wnt Signaling Pathway; Xenopus; Xenopus Proteins

2014
Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2).
    British journal of cancer, 2002, May-20, Volume: 86, Issue:10

    Green tea, mainly through its constituents epigallocatechin gallate, epigallocatechin, epicatechin gallate and epicatechin, has demonstrated anticarcinogenic activity in several animal models, including those for skin, lung and gastro-intestinal tract cancer, although less is known about colorectal cancer. Quercetin, the major flavonoid present in vegetables and fruit, exerts potential anticarcinogenic effects in animal models and cell cultures, but less is known about quercetin glucosides. The objectives of this study were to investigate (i) the antioxidant activity of the phenolic compounds epicatechin, epigallocatechin gallate, gallic acid and quercetin-3-glucoside; (ii) the cytotoxicity of different concentrations of epicatechin, epigallocatechin gallate, and gallic acid; (iii) the cellular uptake of epicatechin, epigallocatechin gallate, gallic acid and quercetin-3-glucoside and (iv) their effect on the cell cycle. Human colon adenocarcinoma cells were used as experimental model. The results of this study indicate that all dietary flavonoids studied (epicatechin, epigallocatechin gallate, gallic acid and quercetin-3-glucoside) show a significant antioxidant effect in a chemical model system, but only epigallocatechin gallate or gallic acid are able to interfere with the cell cycle in Caco2 cell lines. These data suggest that the antioxidant activity of flavonoids is not related to the inhibition of cellular growth. From a structural point of view, the galloyl moiety appears to be required for both the antioxidant and the antiproliferative effects.

    Topics: Adenocarcinoma; Anticarcinogenic Agents; Antioxidants; Catechin; Cell Cycle; Cell Division; Colonic Neoplasms; Flavonoids; Gallic Acid; Humans; Hydrogen Peroxide; Molecular Structure; Quercetin; Structure-Activity Relationship; Tea; Tumor Cells, Cultured

2002