irosustat has been researched along with Prostatic-Neoplasms* in 3 studies
1 review(s) available for irosustat and Prostatic-Neoplasms
Article | Year |
---|---|
Sulfatase inhibitors: a patent review.
Steroid sulfatase (STS) converts sulfated hormones to free hormones of importance in hormone-dependent diseases such as breast cancer and endometriosis. Carbohydrate sulfatases degrade complex carbohydrates as part of normal cellular turnover; certain lysosomal storage disorders (LSDs) involve defective processing of sulfated glycosaminoglycans by mutant sulfatases.. Aryl sulfamates have been developed as STS inhibitors, and STX64 and PGL2001 are under evaluation in Phase I and II clinical trials for treatment of endometrial and metastatic breast and prostate cancers and endometriosis. Dual-acting compounds have emerged that are aromatase inhibitors (AIs), selective estrogen receptor antagonists, or inhibitors of microtubule polymerization. Sulfamidase inhibitors as pharmacological chaperones to assist maturation of folding-defective mutants for the treatment of Sanfilippo type A disease are under investigation. Coverage: The patent literature after the mid-1990s.. The failure of STX64 in a Phase II monotherapy clinical trial should not dissuade further investigations in multidrug regimens, particularly in combination with AIs. The recent development of dual-acting compounds may enhance the potential for success in the clinic. Further investigations into aryl sulfamates are required to clarify the molecular mechanism of action; additionally, new reversible sulfatase inhibition concepts are needed for the development of pharmacological chaperones for sulfatase LSDs. Topics: Animals; Breast Neoplasms; Clinical Trials, Phase I as Topic; Clinical Trials, Phase II as Topic; Drug Design; Endometriosis; Enzyme Inhibitors; Estradiol; Female; Humans; Male; Mucopolysaccharidosis III; Patents as Topic; Prostatic Neoplasms; Steryl-Sulfatase; Sulfonic Acids | 2013 |
2 other study(ies) available for irosustat and Prostatic-Neoplasms
Article | Year |
---|---|
Discovery and Development of the Aryl O-Sulfamate Pharmacophore for Oncology and Women's Health.
In 1994, following work from this laboratory, it was reported that estrone-3-O-sulfamate irreversibly inhibits a new potential hormone-dependent cancer target steroid sulfatase (STS). Subsequent drug discovery projects were initiated to develop the core aryl O-sulfamate pharmacophore that, over some 20 years, have led to steroidal and nonsteroidal drugs in numerous preclinical and clinical trials, with promising results in oncology and women's health, including endometriosis. Drugs have been designed to inhibit STS, e.g., Irosustat, as innovative dual-targeting aromatase-steroid sulfatase inhibitors (DASIs) and as multitargeting agents for hormone-independent tumors, such as the steroidal STX140 and nonsteroidal counterparts, acting inter alia through microtubule disruption. The aryl sulfamate pharmacophore is highly versatile, operating via three distinct mechanisms of action, and imbues attractive pharmaceutical properties. This Perspective gives a personal view of the work leading both to the therapeutic concepts and these drugs, their current status, and how they might develop in the future. Topics: Animals; Antineoplastic Agents; Aromatase Inhibitors; Breast Neoplasms; Drug Discovery; Endometriosis; Estrone; Female; Humans; Male; Molecular Targeted Therapy; Prostatic Neoplasms; Steryl-Sulfatase; Sulfonic Acids; Tubulin Modulators | 2015 |
Enhanced expression of organic anion transporting polypeptides (OATPs) in androgen receptor-positive prostate cancer cells: possible role of OATP1A2 in adaptive cell growth under androgen-depleted conditions.
The biological mechanisms underlying castration resistance of prostate cancer are not fully understood. In the present study, we examined the role of organic anion transporting polypeptides (OATPs) as importers of dehydroepiandrosterone sulfate (DHEAS) into cells to support growth under androgen-depleted conditions. Cell growth and mRNA expression of OATP genes were studied in human prostate cancer LNCaP and 22Rv1 cells under androgen-depleted conditions. The stimulatory effect of DHEAS on cell growth was investigated in LNCaP cells in which OATP1A2 had been silenced. Growth of both cell lines was stimulated by DHEAS and the effect was attenuated by STX64, an inhibitor of steroid sulfatase which can covert DHEAS to DHEA. OATP1A2 mRNA expression was increased most prominently among various genes tested in LNCaP cells grown in androgen-depleted medium. Similar results were obtained with 22Rv1 cells. Furthermore, the characteristics of [(3)H]DHEAS uptake by LNCaP cells were consistent with those of OATP-mediated transport. Knockdown of OATP1A2 in LNCaP cells resulted in loss of the DHEAS sensitivity of cell growth. Our results suggest that enhanced OATP1A2 expression is associated with adaptive cell growth of prostate cancer cells under androgen-depleted conditions. Thus, OATP1A2 may be a pharmacological target for prostate cancer treatment. Topics: Androgen Antagonists; Cell Division; Cell Line, Tumor; Gene Expression Profiling; Humans; Male; Organic Anion Transporters; Prostatic Neoplasms; Receptors, Androgen; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Sulfonic Acids | 2012 |