iridoids has been researched along with Thrombosis* in 2 studies
2 other study(ies) available for iridoids and Thrombosis
Article | Year |
---|---|
Amarogentin, a secoiridoid glycoside, abrogates platelet activation through PLC γ 2-PKC and MAPK pathways.
Amarogentin, an active principle of Gentiana lutea, possess antitumorigenic, antidiabetic, and antioxidative properties. Activation of platelets is associated with intravascular thrombosis and cardiovascular diseases. The present study examined the effects of amarogentin on platelet activation. Amarogentin treatment (15~60 μM) inhibited platelet aggregation induced by collagen, but not thrombin, arachidonic acid, and U46619. Amarogentin inhibited collagen-induced phosphorylation of phospholipase C (PLC) γ2, protein kinase C (PKC), and mitogen-activated protein kinases (MAPKs). It also inhibits in vivo thrombus formation in mice. In addition, neither the guanylate cyclase inhibitor ODQ nor the adenylate cyclase inhibitor SQ22536 affected the amarogentin-mediated inhibition of platelet aggregation, which suggests that amarogentin does not regulate the levels of cyclic AMP and cyclic GMP. In conclusion, amarogentin prevents platelet activation through the inhibition of PLC γ2-PKC cascade and MAPK pathway. Our findings suggest that amarogentin may offer therapeutic potential for preventing or treating thromboembolic disorders. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Adenine; Adenosine Triphosphate; Animals; Arachidonic Acid; Collagen; Cyclic GMP; Guanylate Cyclase; Humans; Iridoids; MAP Kinase Signaling System; Mice; Oxadiazoles; Phospholipase C gamma; Plant Extracts; Platelet Activation; Protein Kinase C; Quinoxalines; Thrombin; Thromboembolism; Thrombosis | 2014 |
Antithrombotic effect of geniposide and genipin in the mouse thrombosis model.
Geniposide is one of the constituents of Gardenia fruit (Gardenia jasminoides Ellis, Rubiaceae), which has been used in traditional medicine. Although its anti-inflammatory and antithrombotic effects have been reported, the way it acts is still unclear. We have investigated the effects of geniposide and its metabolite genipin on thrombogenesis and platelet aggregation. In an in vivo model, geniposide and genipin significantly (P < 0.05) prolonged the time required for thrombotic occlusion induced by photochemical reaction in the mouse femoral artery. In an in vitro study, both geniposide and genipin inhibited collagen-induced, but did not inhibit arachidonate-induced, mouse platelet aggregation. However aspirin, a cyclooxygenase inhibitor, inhibited arachidonate-induced platelet aggregation but only partially inhibited the collagen-induced one. We also showed, by measuring PLA(2)-catalyzed arachidonic acid release, that geniposide inhibited phospholipase A(2) (PLA(2)) activity. We conclude that geniposide showed an antithrombotic effect in vivo due to the suppression of platelet aggregation. PLA(2) inhibition by geniposide is one possible anti-platelet mechanism. Topics: Animals; Disease Models, Animal; Fibrinolytic Agents; Fruit; Iridoid Glycosides; Iridoids; Male; Mice; Phospholipases A; Phytotherapy; Plant Extracts; Platelet Aggregation; Pyrans; Rubiaceae; Thrombosis | 2001 |