iridoids and Peripheral-Nerve-Injuries

iridoids has been researched along with Peripheral-Nerve-Injuries* in 2 studies

Other Studies

2 other study(ies) available for iridoids and Peripheral-Nerve-Injuries

ArticleYear
Gardenoside combined with ozone inhibits the expression of P2X3 and P2X7 purine receptors in rats with sciatic nerve injury.
    Molecular medicine reports, 2018, Volume: 17, Issue:6

    Neuropathic pain is a severe health problem for which there is a lack of effective therapy. Ozone and Gardenia fruits have been used separately in pain relief for many years; however, their underlying mechanisms remain unclear. To investigate the pain‑relieving effects of combined ozone and Gardenia, a chronic constriction sciatic nerve injury (CCI) rat model was constructed and treated with ozone and gardenoside (Ozo&Gar), which is a compound found in Gardenia fruits. A total of 70 rats were randomly divided into five groups: Control (Ctrl), Ctrl + Ozo&Gar, Sham, CCI, and CCI + Ozo&Gar. The rats in the Ctrl + Ozo&Gar and CCI + Ozo&Gar groups were administered an intravenous injection of 30 µg/ml ozone and 300 µmol/l gardenoside. The rats in the Ctrl, Sham and CCI groups were administered the same volume of saline. Pain behavior, mechanical hyperalgesia, thermal hyperalgesia, and the protein expression levels of P2X3 and P2X7 purine receptors in L4‑L5 dorsal root ganglion (DRG) were determined 15 days post‑surgery. The results demonstrated that treatment with a combination of ozone and gardenoside increased mechanical withdrawal threshold and thermal withdrawal latency, thus confirming their pain‑relieving effects. In addition, a significant increase in the mRNA and protein expression levels of P2X3 and P2X7 was detected in the DRG of rats in the CCI group compared with in the control groups; however, following treatment with a combination of ozone and gardenoside, the mRNA and protein expression levels of P2X3 and P2X7 receptors were significantly reduced compared with in the CCI group. These results indicated that the mechanism underlying the pain‑relieving effects of ozone and gardenoside may be mediated by inhibition of P2X3 and P2X7 purine receptors in the DRG. This finding suggested that ozone and gardenoside may be considered potential drug candidates that target P2X3 and P2X7 purine receptors.

    Topics: Animals; Gene Expression Regulation; Iridoids; Male; Neuralgia; Oxidants, Photochemical; Ozone; Pain Measurement; Peripheral Nerve Injuries; Rats; RNA, Messenger; Sciatic Neuropathy

2018
Novel use of biodegradable casein conduits for guided peripheral nerve regeneration.
    Journal of the Royal Society, Interface, 2011, Nov-07, Volume: 8, Issue:64

    Recent advances in nerve repair technology have focused on finding more biocompatible, non-toxic materials to imitate natural peripheral nerve components. In this study, casein protein cross-linked with naturally occurring genipin (genipin-cross-linked casein (GCC)) was used for the first time to make a biodegradable conduit for peripheral nerve repair. The GCC conduit was dark blue in appearance with a concentric and round lumen. Water uptake, contact angle and mechanical tests indicated that the conduit had a high stability in water and did not collapse and cramped with a sufficiently high level of mechanical properties. Cytotoxic testing and terminal deoxynucleotidyl transferase dUTP nick-end labelling assay showed that the GCC was non-toxic and non-apoptotic, which could maintain the survival and outgrowth of Schwann cells. Non-invasive real-time nuclear factor-κB bioluminescence imaging accompanied by histochemical assessment showed that the GCC was highly biocompatible after subcutaneous implantation in transgenic mice. Effectiveness of the GCC conduit as a guidance channel was examined as it was used to repair a 10 mm gap in the rat sciatic nerve. Electrophysiology, labelling of calcitonin gene-related peptide in the lumbar spinal cord, and histology analysis all showed a rapid morphological and functional recovery for the disrupted nerves. Therefore, we conclude that the GCC can offer great nerve regeneration characteristics and can be a promising material for the successful repair of peripheral nerve defects.

    Topics: Absorbable Implants; Animals; Caseins; Electrophysiology; Guided Tissue Regeneration; Histological Techniques; Image Processing, Computer-Assisted; Immunohistochemistry; In Situ Nick-End Labeling; Iridoid Glycosides; Iridoids; Mice; Mice, Transgenic; Nerve Regeneration; Peripheral Nerve Injuries; Rats; Schwann Cells; Sciatic Nerve

2011