iridoids has been researched along with Inflammation* in 100 studies
5 review(s) available for iridoids and Inflammation
Article | Year |
---|---|
Effects of Oleuropein and Hydroxytyrosol on Inflammatory Mediators: Consequences on Inflammaging.
Aging is associated with a low-grade, systemic inflammatory state defined as "inflammaging", ruled by the loss of proper regulation of the immune system leading to the accumulation of pro-inflammatory mediators. Such a condition is closely connected to an increased risk of developing chronic diseases. A number of studies demonstrate that olive oil phenolic compound oleuropein and its derivative hydroxytyrosol contribute to modulating tissue inflammation and oxidative stress, thus becoming attractive potential candidates to be used in the context of nutraceutical interventions, in order to ameliorate systemic inflammation in aging subjects. In this review, we aim to summarize the available data about the anti-inflammatory properties of oleuropein and hydroxytyrosol, discussing them in the light of molecular pathways involved in the synthesis and release of inflammatory mediators in inflammaging. Topics: Antioxidants; Humans; Inflammation; Inflammation Mediators; Iridoid Glucosides; Iridoids; Olive Oil; Phenylethyl Alcohol | 2022 |
Unprecedented community containment measures were taken following the recent outbreak of COVID-19 in Italy. The aim of the study was to explore the self-reported future compliance of citizens with such measures and its relationship with potentially impactful psychological variables.. An online survey was completed by 931 people (18-76 years) distributed across the Italian territory. In addition to demographics, five dimensions were measured: self-reported compliance with containment measures over time (today, at 7, 14, 30, 60, 90, and 180 days from now) at three hypothetical risk levels (10, 50, 90% of likelihood of contracting the COVID-19), perceived risk, generalized anxiety, intolerance of uncertainty, and relevance of several psychological needs whose satisfaction is currently precluded.. The duration of containment measures plays a crucial role in tackling the spread of the disease as people will be less compliant over time. Psychological needs of citizens impacting on the compliance should be taken into account when planning an easing of the lockdown, along with interventions for protecting vulnerable groups from mental distress.. La apendicitis aguda (AA) es la urgencia quirúrgica abdominal más frecuente. No encontramos estudios específicos que evalúen el impacto de la pandemia causada por el coronavirus 2 (SARS-Cov-2) sobre la AA y su tratamiento quirúrgico. Analizamos la influencia de esta nueva patología sobre la AA.. Estudio observacional retrospectivo en pacientes intervenidos por AA desde enero hasta abril de 2020. Fueron clasificados según el momento de la apendicectomía, antes de la declaración del estado de alarma (Pre-COVID19) y después de la declaración del estado de alarma (Post-COVID19) en España. Se evaluaron variables demográficas, duración de la sintomatología, tipo de apendicitis, tiempo quirúrgico, estancia hospitalaria y complicaciones postoperatorias.. La pandemia por SARS-Cov-2 influye en el momento de diagnóstico de la apendicitis, así como en su grado de evolución y estancia hospitalaria. La peritonitis fue lo más frecuentemente observado. Una sospecha y orientación clínica más temprana, es necesaria para evitar un manejo inadecuado de este trastorno quirúrgico común.. The primary outcome is improvement in PaO. Findings will provide timely information on the safety, efficacy, and optimal dosing of t-PA to treat moderate/severe COVID-19-induced ARDS, which can be rapidly adapted to a phase III trial (NCT04357730; FDA IND 149634).. None.. The gut barrier is crucial in cirrhosis in preventing infection-causing bacteria that normally live in the gut from accessing the liver and other organs via the bloodstream. Herein, we characterised gut inflammation by measuring different markers in stool samples from patients at different stages of cirrhosis and comparing this to healthy people. These markers, when compared with equivalent markers usually measured in blood, were found to be very different in pattern and absolute levels, suggesting that there is significant gut inflammation in cirrhosis related to different immune system pathways to that seen outside of the gut. This provides new insights into gut-specific immune disturbances that predispose to complications of cirrhosis, and emphasises that a better understanding of the gut-liver axis is necessary to develop better targeted therapies.. La surveillance de l’intervalle QT a suscité beaucoup d’intérêt durant la pandémie de la COVID-19 en raison de l’utilisation de médicaments prolongeant l’intervalle QT et les préoccupations quant à la transmission virale par les électrocardiogrammes (ECG) en série. Nous avons posé l’hypothèse que la surveillance en continu de l’intervalle QT par télémétrie était associée à une meilleure détection des épisodes de prolongation de l’intervalle QT.. Nous avons introduit la télémétrie cardiaque en continu (TCC) à l’aide d’un algorithme de surveillance automatisée de l’intervalle QT dans nos unités de COVID-19. Les mesures automatisées quotidiennes de l’intervalle QT corrigé (auto-QTc) en fonction de la fréquence cardiaque maximale ont été enregistrées. Nous avons comparé la proportion des épisodes de prolongation marquée de l’intervalle QTc (QTc long), définie par un intervalle QTc ≥ 500 ms, chez les patients montrant une suspicion de COVID-19 ou ayant la COVID-19 qui avaient été admis avant et après la mise en place de la TCC (groupe témoin. La surveillance en continu de l’intervalle QT est supérieure à la norme de soins dans la détection des épisodes de QTc long et exige peu d’ECG. La réponse clinique aux épisodes de QTc long est sous-optimale.. Exposure to a model wildfire air pollution source modifies cardiovascular responses to HC challenge, suggesting air pollution sensitizes the body to systemic triggers.. Though the majority of HIV-infected adults who were on HAART had shown viral suppression, the rate of suppression was sub-optimal according to the UNAIDS 90-90-90 target to help end the AIDS pandemic by 2020. Nonetheless, the rate of immunological recovery in the study cohort was low. Hence, early initiation of HAART should be strengthened to achieve good virological suppression and immunological recovery.. Dust in Egyptian laying hen houses contains high concentrations of microorganisms and endotoxins, which might impair the health of birds and farmers when inhaled. Furthermore, laying hens in Egypt seem to be a reservoir for ESBL-producing Enterobacteriaceae. Thus, farmers are at risk of exposure to ESBL-producing bacteria, and colonized hens might transmit these bacteria into the food chain.. The lack of significant differences in the absolute changes and relative ratios of injury and repair biomarkers by contrast-associated AKI status suggests that the majority of mild contrast-associated AKI cases may be driven by hemodynamic changes at the kidney.. Most comparisons for different outcomes are based on very few studies, mostly low-powered, with an overall low CoE. Thus, the available evidence is considered insufficient to either support or refute CH effectiveness or to recommend one ICM over another. Therefore, further well-designed, larger RCTs are required.. PROSPERO database Identifier: CRD42016041953.. Untouched root canal at cross-section perimeter, the Hero 642 system showed 41.44% ± 5.62% and Reciproc R40 58.67% ± 12.39% without contact with instruments. Regarding the untouched area, Hero 642 system showed 22.78% ± 6.42% and Reciproc R40 34.35% ± 8.52%. Neither instrument achieved complete cross-sectional root canal debridement. Hero 642 system rotary taper 0.02 instruments achieved significant greater wall contact perimeter and area compared to reciprocate the Reciproc R40 taper 0.06 instrument.. Hero 642 achieved higher wall contact perimeter and area but, regardless of instrument size and taper, vital pulp during. The functional properties of the main mechanisms involved in the control of muscle Ca. This study showed that the anti-inflammatory effect of the iron-responsive product DHA in arthritis can be monitored by an iron-like radioactive tracer (. Attenuated vascular reactivity during pregnancy suggests that the systemic vasodilatory state partially depletes nitric oxide bioavailability. Preliminary data support the potential for MRI to identify vascular dysfunction in vivo that underlies PE. Level of Evidence 2 Technical Efficacy Stage 1 J. MAGN. RESON. IMAGING 2021;53:447-455.. La evaluación de riesgo es importante para predecir los resultados postoperatorios en pacientes con cáncer gastroesofágico. Este estudio de cohortes tuvo como objetivo evaluar los cambios en la composición corporal durante la quimioterapia neoadyuvante e investigar su asociación con complicaciones postoperatorias. MÉTODOS: Los pacientes consecutivos con cáncer gastroesofágico sometidos a quimioterapia neoadyuvante y cirugía con intención curativa entre 2016 y 2019, identificados a partir de una base de datos específica, se incluyeron en el estudio. Se utilizaron las imágenes de tomografía computarizada, antes y después de la quimioterapia neoadyuvante, para evaluar el índice de masa muscular esquelética, la sarcopenia y el índice de grasa visceral y subcutánea.. In this in vitro premature infant lung model, HF oscillation of BCPAP was associated with improved CO. Our results showed that HPC significantly promotes neurogenesis after MCAO and ameliorates neuronal injury.. Inflammatory markers are highly related to signs of systemic hypoperfusion in CS. Moreover, high PCT and IL-6 levels are associated with poor prognosis.. These findings indicate that Tetrapleura tetraptera fruit has a protective potential against stroke through modulation of redox and electrolyte imbalances, and attenuation of neurotransmitter dysregulation and other neurochemical dysfunctions. Tetrapleura tetraptera fruit could be a promising source for the discovery of bioactives for stroke therapy. Topics: 3T3-L1 Cells; A Kinase Anchor Proteins; Acetates; Achilles Tendon; Acute Kidney Injury; Acute Pain; Acyclic Monoterpenes; Adenine Nucleotides; Adhesins, Escherichia coli; Adipocytes; Adipocytes, Brown; Adipogenesis; Administration, Inhalation; Administration, Oral; Adrenal Cortex Hormones; Adsorption; Adult; Aeromonas hydrophila; Africa; Aged; Aged, 80 and over; Agrobacterium tumefaciens; Air; Air Pollutants; Air Pollution; Air Pollution, Indoor; Algorithms; Alkaloids; Alkynes; Allosteric Regulation; Amines; Amino Acid Sequence; Amino Acids; Amino Acids, Branched-Chain; Aminoisobutyric Acids; Aminopyridines; Amyotrophic Lateral Sclerosis; Anaerobic Threshold; Angiography; Angiotensin II Type 1 Receptor Blockers; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Animal Distribution; Animal Feed; Animal Nutritional Physiological Phenomena; Animals; Ankle Joint; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Inflammatory Agents; Antibodies, Bacterial; Antifungal Agents; Antimalarials; Antineoplastic Agents; Antineoplastic Agents, Phytogenic; Antioxidants; Antiretroviral Therapy, Highly Active; Antiviral Agents; Aotidae; Apelin; Apoptosis; Arabidopsis Proteins; Argentina; Arginine; Artemisinins; Arthritis, Experimental; Arthritis, Rheumatoid; Arthroscopy; Aspergillus; Aspergillus niger; Asteraceae; Asthma; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; Auditory Cortex; Autoantibodies; Autophagy; Bacteria; Bacterial Infections; Bacterial Proteins; Bacterial Typing Techniques; Base Composition; Base Sequence; Basketball; Beclin-1; Benzhydryl Compounds; Benzimidazoles; Benzo(a)pyrene; Benzofurans; Benzoxazines; Bereavement; beta Catenin; beta-Lactamase Inhibitors; beta-Lactamases; beta-Lactams; Betacoronavirus; Betaine; Binding Sites; Biofilms; Biological Assay; Biological Availability; Biological Evolution; Biomarkers; Biomechanical Phenomena; Biopolymers; Biopsy; Bismuth; Blood Glucose; Blood Platelets; Blood Pressure; Body Composition; Body Weight; Bone Marrow; Bone Marrow Cells; Bone Regeneration; Boron; Botrytis; Brain Ischemia; Brain Neoplasms; Brain-Derived Neurotrophic Factor; Brazil; Breast Neoplasms; Breath Tests; Bronchoalveolar Lavage Fluid; Burkholderia; C-Reactive Protein; Caenorhabditis elegans; Caenorhabditis elegans Proteins; Calcification, Physiologic; Calcium; Calcium Signaling; Calorimetry, Differential Scanning; Cameroon; Camptothecin; Candida; Candida albicans; Capillaries; Carbapenem-Resistant Enterobacteriaceae; Carbapenems; Carbohydrate Conformation; Carbon; Carbon Dioxide; Carbon Isotopes; Carcinoma, Ovarian Epithelial; Cardiac Output; Cardiomyopathy, Hypertrophic; Cardiotonic Agents; Cardiovascular Diseases; Caregivers; Carps; Case-Control Studies; Catalase; Catalysis; Cats; CD4 Lymphocyte Count; Cell Culture Techniques; Cell Differentiation; Cell Line, Tumor; Cell Membrane; Cell Movement; Cell Proliferation; Cell Survival; Cells, Cultured; Cellulose; Centrosome; Ceratopogonidae; Chickens; Child; China; Cholera Toxin; Choline; Cholinesterases; Chromatography, High Pressure Liquid; Chromatography, Liquid; Chromatography, Micellar Electrokinetic Capillary; Chromatography, Reverse-Phase; Chronic Disease; Cinnamates; Cities; Citrates; Climate Change; Clinical Trials, Phase III as Topic; Coal; Coal Mining; Cohort Studies; Coinfection; Colchicine; Colony Count, Microbial; Colorectal Neoplasms; Coloring Agents; Common Cold; Complement Factor H; Computational Biology; Computer Simulation; Continuous Positive Airway Pressure; Contrast Media; Coordination Complexes; Coronary Artery Bypass; Coronavirus 3C Proteases; Coronavirus Infections; Coronavirus Protease Inhibitors; Corynebacterium glutamicum; Cosmetics; COVID-19; Creatinine; Cross-Sectional Studies; Crotonates; Crystallography, X-Ray; Cues; Culicidae; Culture Media; Curcuma; Cyclopentanes; Cyclopropanes; Cymbopogon; Cystine; Cytochrome P-450 CYP2B6; Cytochrome P-450 CYP2C19; Cytochrome P-450 CYP2C19 Inhibitors; Cytokines; Databases, Genetic; Death; Dendritic Cells; Density Functional Theory; Depsides; Diabetes Mellitus, Type 2; Diamond; Diarylheptanoids; Dibenzofurans; Dibenzofurans, Polychlorinated; Diclofenac; Diet; Dietary Carbohydrates; Dietary Supplements; Diffusion Magnetic Resonance Imaging; Dioxins; Diphenylamine; Disease Outbreaks; Disease Susceptibility; Disulfides; Dithiothreitol; Dizocilpine Maleate; DNA Methylation; DNA-Binding Proteins; DNA, Bacterial; Dogs; Dose-Response Relationship, Drug; Double-Blind Method; Doublecortin Protein; Drosophila melanogaster; Droughts; Drug Carriers; Drug Combinations; Drug Delivery Systems; Drug Liberation; Drug Resistance; Drug Resistance, Bacterial; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Dust; Dynactin Complex; Dysferlin; Echo-Planar Imaging; Echocardiography; Edaravone; Egypt; Elasticity; Electrodes; Electrolytes; Emodin; Emtricitabine; Endometriosis; Endothelium, Vascular; Endotoxins; Energy Metabolism; Energy Transfer; Enterobacteriaceae; Enterococcus faecalis; Enterotoxigenic Escherichia coli; Environmental Monitoring; Enzyme Inhibitors; Epidemiologic Factors; Epigenesis, Genetic; Erythrocytes; Escherichia coli; Escherichia coli Infections; Escherichia coli Vaccines; Esophageal Neoplasms; Esophagectomy; Esophagogastric Junction; Esterases; Esterification; Ethanol; Ethiopia; Ethnicity; Eucalyptus; Evidence-Based Practice; Exercise; Exercise Tolerance; Extracorporeal Membrane Oxygenation; Family; Fatty Acids; Feedback; Female; Ferric Compounds; Fibrin Fibrinogen Degradation Products; Filtration; Fish Diseases; Flavonoids; Flavonols; Fluorodeoxyglucose F18; Follow-Up Studies; Food Microbiology; Food Preservation; Forests; Fossils; Free Radical Scavengers; Freund's Adjuvant; Fruit; Fungi; Gallium; Gender Identity; Gene Expression Regulation; Gene Expression Regulation, Neoplastic; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Genes, Bacterial; Genes, Plant; Genetic Predisposition to Disease; Genitalia; Genotype; Glomerulonephritis, IGA; Glottis; Glucocorticoids; Glucose; Glucuronides; Glutathione Transferase; Glycogen Synthase Kinase 3 beta; Gram-Negative Bacterial Infections; Gram-Positive Bacterial Infections; Grassland; Guinea Pigs; Half-Life; Head Kidney; Heart Atria; Heart Rate; Heart Septum; HEK293 Cells; Hematopoietic Stem Cells; Hemodynamics; Hep G2 Cells; Hepacivirus; Hepatitis C; Hepatitis C, Chronic; Hepatocytes; Hesperidin; High-Frequency Ventilation; High-Temperature Requirement A Serine Peptidase 1; Hippocampus; Hirudins; History, 20th Century; History, 21st Century; HIV Infections; Homeostasis; Hominidae; Housing, Animal; Humans; Hydrocarbons, Brominated; Hydrogen Bonding; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydroxybutyrates; Hydroxyl Radical; Hypertension; Hypothyroidism; Image Interpretation, Computer-Assisted; Immunoconjugates; Immunogenic Cell Death; Indoles; Infant, Newborn; Infant, Premature; Infarction, Middle Cerebral Artery; Inflammation; Inflammation Mediators; Infrared Rays; Inhibitory Concentration 50; Injections, Intravenous; Interferon-gamma; Interleukin-23; Interleukin-4; Interleukin-6; Intermediate Filaments; Intermittent Claudication; Intestine, Small; Iridoid Glucosides; Iridoids; Iron; Isomerism; Isotope Labeling; Isoxazoles; Itraconazole; Kelch-Like ECH-Associated Protein 1; Ketoprofen; Kidney Failure, Chronic; Kinetics; Klebsiella pneumoniae; Lactams, Macrocyclic; Lactobacillus; Lactulose; Lakes; Lamivudine; Laparoscopy; Laparotomy; Laryngoscopy; Leucine; Limit of Detection; Linear Models; Lipid A; Lipopolysaccharides; Listeria monocytogenes; Liver; Liver Cirrhosis; Logistic Models; Longitudinal Studies; Losartan; Low Back Pain; Lung; Lupinus; Lupus Erythematosus, Systemic; Machine Learning; Macular Degeneration; Madin Darby Canine Kidney Cells; Magnetic Phenomena; Magnetic Resonance Imaging; Magnetic Resonance Spectroscopy; Magnetics; Malaria, Falciparum; Male; Mannans; MAP Kinase Signaling System; Mass Spectrometry; Melatonin; Membrane Glycoproteins; Membrane Proteins; Meniscectomy; Menisci, Tibial; Mephenytoin; Mesenchymal Stem Cells; Metal Nanoparticles; Metal-Organic Frameworks; Methionine; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Nude; Mice, Obese; Mice, Transgenic; Microbial Sensitivity Tests; Microcirculation; MicroRNAs; Microscopy, Video; Microtubules; Microvascular Density; Microwaves; Middle Aged; Minimally Invasive Surgical Procedures; Models, Animal; Models, Biological; Models, Molecular; Models, Theoretical; Molecular Docking Simulation; Molecular Structure; Molecular Weight; Morus; Mouth Floor; Multicenter Studies as Topic; Multiple Sclerosis; Multiple Sclerosis, Relapsing-Remitting; Muscle, Skeletal; Myocardial Ischemia; Myocardium; NAD; NADP; Nanocomposites; Nanoparticles; Naphthols; Nasal Lavage Fluid; Nasal Mucosa; Neisseria meningitidis; Neoadjuvant Therapy; Neoplasm Invasiveness; Neoplasm Recurrence, Local; Neoplasms, Experimental; Neural Stem Cells; Neuroblastoma; Neurofilament Proteins; Neurogenesis; Neurons; New York; NF-E2-Related Factor 2; NF-kappa B; Nicotine; Nitriles; Nitrogen; Nitrogen Fixation; North America; Observer Variation; Occupational Exposure; Ochrobactrum; Oils, Volatile; Olea; Oligosaccharides; Omeprazole; Open Field Test; Optimism; Oregon; Oryzias; Osmolar Concentration; Osteoarthritis; Osteoblasts; Osteogenesis; Ovarian Neoplasms; Ovariectomy; Oxadiazoles; Oxidation-Reduction; Oxidative Stress; Oxygen; Ozone; p38 Mitogen-Activated Protein Kinases; Pakistan; Pandemics; Particle Size; Particulate Matter; Patient-Centered Care; Pelargonium; Peptides; Perception; Peripheral Arterial Disease; Peroxides; Pets; Pharmaceutical Preparations; Pharmacogenetics; Phenobarbital; Phenols; Phenotype; Phosphates; Phosphatidylethanolamines; Phosphines; Phospholipids; Phosphorus; Phosphorylation; Photoacoustic Techniques; Photochemotherapy; Photosensitizing Agents; Phylogeny; Phytoestrogens; Pilot Projects; Plant Components, Aerial; Plant Extracts; Plant Immunity; Plant Leaves; Plant Oils; Plants, Medicinal; Plasmodium berghei; Plasmodium falciparum; Platelet Activation; Platelet Function Tests; Pneumonia, Viral; Poaceae; Pogostemon; Poloxamer; Poly I; Poly(ADP-ribose) Polymerase Inhibitors; Polychlorinated Biphenyls; Polychlorinated Dibenzodioxins; Polycyclic Compounds; Polyethylene Glycols; Polylysine; Polymorphism, Genetic; Polymorphism, Single Nucleotide; Population Dynamics; Portasystemic Shunt, Transjugular Intrahepatic; Positron Emission Tomography Computed Tomography; Postoperative Complications; Postprandial Period; Potassium Cyanide; Predictive Value of Tests; Prefrontal Cortex; Pregnancy; Prepulse Inhibition; Prevalence; Procalcitonin; Prodrugs; Prognosis; Progression-Free Survival; Proline; Proof of Concept Study; Prospective Studies; Protein Binding; Protein Conformation; Protein Domains; Protein Folding; Protein Multimerization; Protein Sorting Signals; Protein Structure, Secondary; Proton Pump Inhibitors; Protozoan Proteins; Psychometrics; Pulse Wave Analysis; Pyridines; Pyrrolidines; Quality of Life; Quantum Dots; Quinoxalines; Quorum Sensing; Radiopharmaceuticals; Rain; Random Allocation; Randomized Controlled Trials as Topic; Rats; Rats, Sprague-Dawley; Rats, Wistar; RAW 264.7 Cells; Reactive Oxygen Species; Receptor, Angiotensin, Type 1; Receptor, PAR-1; Receptors, CXCR4; Receptors, Estrogen; Receptors, Glucocorticoid; Receptors, Interleukin-1; Receptors, Interleukin-17; Receptors, Notch; Recombinant Fusion Proteins; Recombinant Proteins; Reducing Agents; Reflex, Startle; Regional Blood Flow; Regression Analysis; Reperfusion Injury; Reproducibility of Results; Republic of Korea; Respiratory Tract Diseases; Retrospective Studies; Reverse Transcriptase Inhibitors; Rhinitis, Allergic; Risk Assessment; Risk Factors; Rituximab; RNA, Messenger; RNA, Ribosomal, 16S; ROC Curve; Rosmarinic Acid; Running; Ruthenium; Rutin; Sarcolemma; Sarcoma; Sarcopenia; Sarcoplasmic Reticulum; SARS-CoV-2; Scavenger Receptors, Class A; Schools; Seasons; Seeds; Sequence Analysis, DNA; Severity of Illness Index; Sex Factors; Shock, Cardiogenic; Short Chain Dehydrogenase-Reductases; Signal Transduction; Silver; Singlet Oxygen; Sinusitis; Skin; Skin Absorption; Small Molecule Libraries; Smoke; Socioeconomic Factors; Soil; Soil Microbiology; Solid Phase Extraction; Solubility; Solvents; Spain; Spectrometry, Mass, Electrospray Ionization; Spectroscopy, Fourier Transform Infrared; Speech; Speech Perception; Spindle Poles; Spleen; Sporothrix; Staphylococcal Infections; Staphylococcus aureus; Stereoisomerism; Stomach Neoplasms; Stress, Physiological; Stroke Volume; Structure-Activity Relationship; Substrate Specificity; Sulfonamides; Surface Properties; Surface-Active Agents; Surveys and Questionnaires; Survival Rate; T-Lymphocytes, Cytotoxic; Tandem Mass Spectrometry; Temperature; Tenofovir; Terpenes; Tetracycline; Tetrapleura; Textiles; Thermodynamics; Thiobarbituric Acid Reactive Substances; Thrombin; Thyroid Hormones; Thyroid Neoplasms; Tibial Meniscus Injuries; Time Factors; Tissue Distribution; Titanium; Toluidines; Tomography, X-Ray Computed; Tooth; Tramadol; Transcription Factor AP-1; Transcription, Genetic; Transfection; Transgender Persons; Translations; Treatment Outcome; Triglycerides; Ubiquinone; Ubiquitin-Specific Proteases; United Kingdom; United States; Up-Regulation; Vascular Stiffness; Veins; Ventricular Remodeling; Viral Load; Virulence Factors; Virus Replication; Vitis; Voice; Voice Quality; Wastewater; Water; Water Pollutants, Chemical; Water-Electrolyte Balance; Weather; Wildfires; Wnt Signaling Pathway; Wound Healing; X-Ray Diffraction; Xenograft Model Antitumor Assays; Young Adult; Zoogloea | 2022 |
Properties and molecular mechanisms underlying geniposide-mediated therapeutic effects in chronic inflammatory diseases.
Geniposide (GE) is ubiquitous in nearly 40 species of plants, among which Gardenia jasminoides J. Ellis has the highest content, and has been used ethnopharmacologically to treat chronic inflammatory diseases. As a traditional Chinese medicine, Gardenia jasminoides J. Ellis has a long history of usage in detumescence and sedation, liver protection and cholestasis, hypotension and hemostasis. It is commonly used in the treatment of diabetes, hypertension, jaundice hepatitis, sprain and contusion. As a type of iridoid glycosides extracted from Gardenia jasminoides J. Ellis, GE has many pharmacological effects, such as anti-inflammatory, anti-angiogenesic, anti-oxidative, etc. AIM OF THE REVIEW: In this article, we reviewed the sources, traditional usage, pharmacokinetics, toxicity and therapeutic effect of GE on chronic inflammatory diseases, and discussed its potential regulatory mechanisms and clinical application.. GE is a common iridoid glycoside in medicinal plants, which has strong activity in the treatment of chronic inflammatory diseases. A large number of in vivo and in vitro experiments confirmed that GE has certain therapeutic value for a variety of chronic inflammation disease. Its mechanism of function is mainly based on its anti-inflammatory, anti-oxidant, neuroprotective properties, as well as regulation of apoptotsis. GE plays a role in the treatment of chronic inflammatory diseases by regulating cell proliferation and apoptosis, realizing the dynamic balance of pro/anti-inflammatory factors, improving the state of oxidative stress, and restoring abnormally expressed inflammation-related pathways.. According to its extensive pharmacological effects, GE is a promising drug for the treatment of chronic inflammatory diseases. Topics: Animals; Chronic Disease; Humans; Inflammation; Iridoids; Phytotherapy; Plants | 2021 |
Oleuropein Aglycone: A Possible Drug against Degenerative Conditions. In Vivo Evidence of its Effectiveness against Alzheimer's Disease.
The amyloid plaques and neurofibrillary tangles found in the Alzheimer's disease (AD) brain arise as a result of self-assembly into fibrillar material of amyloid-β protein (Aβ) and hyperphosphorylated tau, respectively, through a pathological process starting with the appearance of aggregation nuclei and neurotoxic oligomers. Accordingly, the search of inhibitors of oligomer nucleation and growth is considered a promising target to prevent amyloid toxicity. In recent years, a number of dietary factors including antioxidants, vitamins, and polyphenols have been characterized for their ability to protect cells stressed by several factors including the presence of amyloid deposits as well as to inhibit amyloid self-assembly and cytotoxicity and some of them are currently in clinical trial. The present review summarizes the findings on the beneficial effects against neurodegeneration and other peripheral inflammatory and degenerative diseases of oleuropein aglycone (OLE), a natural phenol abundant in the extra virgin olive oil. The data presently available suggest that OLE could provide a protective and therapeutic effect against a number of pathologies, including AD as well as obesity, type 2 diabetes, non-alcoholic hepatitis, and other natural or experimentally-induced pathological conditions. Such a protection could result, at least in part, in a remarkable improvement of the pathological signs arising from stress conditions including oxidative stress, an excessive inflammatory response, and the presence of cytotoxic aggregated material. In particular, the recent data on the cellular and molecular correlates of OLE neuroprotection suggest it could also play a therapeutic role against AD. Topics: Alzheimer Disease; Anti-Inflammatory Agents; Cognition Disorders; Humans; Inflammation; Iridoid Glucosides; Iridoids; Nerve Degeneration; Plaque, Amyloid | 2015 |
Anti-inflammatory iridoids of botanical origin.
Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer's disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective antiinflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Biological Products; Humans; Inflammation; Iridoids; Molecular Conformation; Plant Extracts; Plants, Medicinal | 2012 |
3 trial(s) available for iridoids and Inflammation
Article | Year |
---|---|
Unprecedented community containment measures were taken following the recent outbreak of COVID-19 in Italy. The aim of the study was to explore the self-reported future compliance of citizens with such measures and its relationship with potentially impactful psychological variables.. An online survey was completed by 931 people (18-76 years) distributed across the Italian territory. In addition to demographics, five dimensions were measured: self-reported compliance with containment measures over time (today, at 7, 14, 30, 60, 90, and 180 days from now) at three hypothetical risk levels (10, 50, 90% of likelihood of contracting the COVID-19), perceived risk, generalized anxiety, intolerance of uncertainty, and relevance of several psychological needs whose satisfaction is currently precluded.. The duration of containment measures plays a crucial role in tackling the spread of the disease as people will be less compliant over time. Psychological needs of citizens impacting on the compliance should be taken into account when planning an easing of the lockdown, along with interventions for protecting vulnerable groups from mental distress.. La apendicitis aguda (AA) es la urgencia quirúrgica abdominal más frecuente. No encontramos estudios específicos que evalúen el impacto de la pandemia causada por el coronavirus 2 (SARS-Cov-2) sobre la AA y su tratamiento quirúrgico. Analizamos la influencia de esta nueva patología sobre la AA.. Estudio observacional retrospectivo en pacientes intervenidos por AA desde enero hasta abril de 2020. Fueron clasificados según el momento de la apendicectomía, antes de la declaración del estado de alarma (Pre-COVID19) y después de la declaración del estado de alarma (Post-COVID19) en España. Se evaluaron variables demográficas, duración de la sintomatología, tipo de apendicitis, tiempo quirúrgico, estancia hospitalaria y complicaciones postoperatorias.. La pandemia por SARS-Cov-2 influye en el momento de diagnóstico de la apendicitis, así como en su grado de evolución y estancia hospitalaria. La peritonitis fue lo más frecuentemente observado. Una sospecha y orientación clínica más temprana, es necesaria para evitar un manejo inadecuado de este trastorno quirúrgico común.. The primary outcome is improvement in PaO. Findings will provide timely information on the safety, efficacy, and optimal dosing of t-PA to treat moderate/severe COVID-19-induced ARDS, which can be rapidly adapted to a phase III trial (NCT04357730; FDA IND 149634).. None.. The gut barrier is crucial in cirrhosis in preventing infection-causing bacteria that normally live in the gut from accessing the liver and other organs via the bloodstream. Herein, we characterised gut inflammation by measuring different markers in stool samples from patients at different stages of cirrhosis and comparing this to healthy people. These markers, when compared with equivalent markers usually measured in blood, were found to be very different in pattern and absolute levels, suggesting that there is significant gut inflammation in cirrhosis related to different immune system pathways to that seen outside of the gut. This provides new insights into gut-specific immune disturbances that predispose to complications of cirrhosis, and emphasises that a better understanding of the gut-liver axis is necessary to develop better targeted therapies.. La surveillance de l’intervalle QT a suscité beaucoup d’intérêt durant la pandémie de la COVID-19 en raison de l’utilisation de médicaments prolongeant l’intervalle QT et les préoccupations quant à la transmission virale par les électrocardiogrammes (ECG) en série. Nous avons posé l’hypothèse que la surveillance en continu de l’intervalle QT par télémétrie était associée à une meilleure détection des épisodes de prolongation de l’intervalle QT.. Nous avons introduit la télémétrie cardiaque en continu (TCC) à l’aide d’un algorithme de surveillance automatisée de l’intervalle QT dans nos unités de COVID-19. Les mesures automatisées quotidiennes de l’intervalle QT corrigé (auto-QTc) en fonction de la fréquence cardiaque maximale ont été enregistrées. Nous avons comparé la proportion des épisodes de prolongation marquée de l’intervalle QTc (QTc long), définie par un intervalle QTc ≥ 500 ms, chez les patients montrant une suspicion de COVID-19 ou ayant la COVID-19 qui avaient été admis avant et après la mise en place de la TCC (groupe témoin. La surveillance en continu de l’intervalle QT est supérieure à la norme de soins dans la détection des épisodes de QTc long et exige peu d’ECG. La réponse clinique aux épisodes de QTc long est sous-optimale.. Exposure to a model wildfire air pollution source modifies cardiovascular responses to HC challenge, suggesting air pollution sensitizes the body to systemic triggers.. Though the majority of HIV-infected adults who were on HAART had shown viral suppression, the rate of suppression was sub-optimal according to the UNAIDS 90-90-90 target to help end the AIDS pandemic by 2020. Nonetheless, the rate of immunological recovery in the study cohort was low. Hence, early initiation of HAART should be strengthened to achieve good virological suppression and immunological recovery.. Dust in Egyptian laying hen houses contains high concentrations of microorganisms and endotoxins, which might impair the health of birds and farmers when inhaled. Furthermore, laying hens in Egypt seem to be a reservoir for ESBL-producing Enterobacteriaceae. Thus, farmers are at risk of exposure to ESBL-producing bacteria, and colonized hens might transmit these bacteria into the food chain.. The lack of significant differences in the absolute changes and relative ratios of injury and repair biomarkers by contrast-associated AKI status suggests that the majority of mild contrast-associated AKI cases may be driven by hemodynamic changes at the kidney.. Most comparisons for different outcomes are based on very few studies, mostly low-powered, with an overall low CoE. Thus, the available evidence is considered insufficient to either support or refute CH effectiveness or to recommend one ICM over another. Therefore, further well-designed, larger RCTs are required.. PROSPERO database Identifier: CRD42016041953.. Untouched root canal at cross-section perimeter, the Hero 642 system showed 41.44% ± 5.62% and Reciproc R40 58.67% ± 12.39% without contact with instruments. Regarding the untouched area, Hero 642 system showed 22.78% ± 6.42% and Reciproc R40 34.35% ± 8.52%. Neither instrument achieved complete cross-sectional root canal debridement. Hero 642 system rotary taper 0.02 instruments achieved significant greater wall contact perimeter and area compared to reciprocate the Reciproc R40 taper 0.06 instrument.. Hero 642 achieved higher wall contact perimeter and area but, regardless of instrument size and taper, vital pulp during. The functional properties of the main mechanisms involved in the control of muscle Ca. This study showed that the anti-inflammatory effect of the iron-responsive product DHA in arthritis can be monitored by an iron-like radioactive tracer (. Attenuated vascular reactivity during pregnancy suggests that the systemic vasodilatory state partially depletes nitric oxide bioavailability. Preliminary data support the potential for MRI to identify vascular dysfunction in vivo that underlies PE. Level of Evidence 2 Technical Efficacy Stage 1 J. MAGN. RESON. IMAGING 2021;53:447-455.. La evaluación de riesgo es importante para predecir los resultados postoperatorios en pacientes con cáncer gastroesofágico. Este estudio de cohortes tuvo como objetivo evaluar los cambios en la composición corporal durante la quimioterapia neoadyuvante e investigar su asociación con complicaciones postoperatorias. MÉTODOS: Los pacientes consecutivos con cáncer gastroesofágico sometidos a quimioterapia neoadyuvante y cirugía con intención curativa entre 2016 y 2019, identificados a partir de una base de datos específica, se incluyeron en el estudio. Se utilizaron las imágenes de tomografía computarizada, antes y después de la quimioterapia neoadyuvante, para evaluar el índice de masa muscular esquelética, la sarcopenia y el índice de grasa visceral y subcutánea.. In this in vitro premature infant lung model, HF oscillation of BCPAP was associated with improved CO. Our results showed that HPC significantly promotes neurogenesis after MCAO and ameliorates neuronal injury.. Inflammatory markers are highly related to signs of systemic hypoperfusion in CS. Moreover, high PCT and IL-6 levels are associated with poor prognosis.. These findings indicate that Tetrapleura tetraptera fruit has a protective potential against stroke through modulation of redox and electrolyte imbalances, and attenuation of neurotransmitter dysregulation and other neurochemical dysfunctions. Tetrapleura tetraptera fruit could be a promising source for the discovery of bioactives for stroke therapy. Topics: 3T3-L1 Cells; A Kinase Anchor Proteins; Acetates; Achilles Tendon; Acute Kidney Injury; Acute Pain; Acyclic Monoterpenes; Adenine Nucleotides; Adhesins, Escherichia coli; Adipocytes; Adipocytes, Brown; Adipogenesis; Administration, Inhalation; Administration, Oral; Adrenal Cortex Hormones; Adsorption; Adult; Aeromonas hydrophila; Africa; Aged; Aged, 80 and over; Agrobacterium tumefaciens; Air; Air Pollutants; Air Pollution; Air Pollution, Indoor; Algorithms; Alkaloids; Alkynes; Allosteric Regulation; Amines; Amino Acid Sequence; Amino Acids; Amino Acids, Branched-Chain; Aminoisobutyric Acids; Aminopyridines; Amyotrophic Lateral Sclerosis; Anaerobic Threshold; Angiography; Angiotensin II Type 1 Receptor Blockers; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Animal Distribution; Animal Feed; Animal Nutritional Physiological Phenomena; Animals; Ankle Joint; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Inflammatory Agents; Antibodies, Bacterial; Antifungal Agents; Antimalarials; Antineoplastic Agents; Antineoplastic Agents, Phytogenic; Antioxidants; Antiretroviral Therapy, Highly Active; Antiviral Agents; Aotidae; Apelin; Apoptosis; Arabidopsis Proteins; Argentina; Arginine; Artemisinins; Arthritis, Experimental; Arthritis, Rheumatoid; Arthroscopy; Aspergillus; Aspergillus niger; Asteraceae; Asthma; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; Auditory Cortex; Autoantibodies; Autophagy; Bacteria; Bacterial Infections; Bacterial Proteins; Bacterial Typing Techniques; Base Composition; Base Sequence; Basketball; Beclin-1; Benzhydryl Compounds; Benzimidazoles; Benzo(a)pyrene; Benzofurans; Benzoxazines; Bereavement; beta Catenin; beta-Lactamase Inhibitors; beta-Lactamases; beta-Lactams; Betacoronavirus; Betaine; Binding Sites; Biofilms; Biological Assay; Biological Availability; Biological Evolution; Biomarkers; Biomechanical Phenomena; Biopolymers; Biopsy; Bismuth; Blood Glucose; Blood Platelets; Blood Pressure; Body Composition; Body Weight; Bone Marrow; Bone Marrow Cells; Bone Regeneration; Boron; Botrytis; Brain Ischemia; Brain Neoplasms; Brain-Derived Neurotrophic Factor; Brazil; Breast Neoplasms; Breath Tests; Bronchoalveolar Lavage Fluid; Burkholderia; C-Reactive Protein; Caenorhabditis elegans; Caenorhabditis elegans Proteins; Calcification, Physiologic; Calcium; Calcium Signaling; Calorimetry, Differential Scanning; Cameroon; Camptothecin; Candida; Candida albicans; Capillaries; Carbapenem-Resistant Enterobacteriaceae; Carbapenems; Carbohydrate Conformation; Carbon; Carbon Dioxide; Carbon Isotopes; Carcinoma, Ovarian Epithelial; Cardiac Output; Cardiomyopathy, Hypertrophic; Cardiotonic Agents; Cardiovascular Diseases; Caregivers; Carps; Case-Control Studies; Catalase; Catalysis; Cats; CD4 Lymphocyte Count; Cell Culture Techniques; Cell Differentiation; Cell Line, Tumor; Cell Membrane; Cell Movement; Cell Proliferation; Cell Survival; Cells, Cultured; Cellulose; Centrosome; Ceratopogonidae; Chickens; Child; China; Cholera Toxin; Choline; Cholinesterases; Chromatography, High Pressure Liquid; Chromatography, Liquid; Chromatography, Micellar Electrokinetic Capillary; Chromatography, Reverse-Phase; Chronic Disease; Cinnamates; Cities; Citrates; Climate Change; Clinical Trials, Phase III as Topic; Coal; Coal Mining; Cohort Studies; Coinfection; Colchicine; Colony Count, Microbial; Colorectal Neoplasms; Coloring Agents; Common Cold; Complement Factor H; Computational Biology; Computer Simulation; Continuous Positive Airway Pressure; Contrast Media; Coordination Complexes; Coronary Artery Bypass; Coronavirus 3C Proteases; Coronavirus Infections; Coronavirus Protease Inhibitors; Corynebacterium glutamicum; Cosmetics; COVID-19; Creatinine; Cross-Sectional Studies; Crotonates; Crystallography, X-Ray; Cues; Culicidae; Culture Media; Curcuma; Cyclopentanes; Cyclopropanes; Cymbopogon; Cystine; Cytochrome P-450 CYP2B6; Cytochrome P-450 CYP2C19; Cytochrome P-450 CYP2C19 Inhibitors; Cytokines; Databases, Genetic; Death; Dendritic Cells; Density Functional Theory; Depsides; Diabetes Mellitus, Type 2; Diamond; Diarylheptanoids; Dibenzofurans; Dibenzofurans, Polychlorinated; Diclofenac; Diet; Dietary Carbohydrates; Dietary Supplements; Diffusion Magnetic Resonance Imaging; Dioxins; Diphenylamine; Disease Outbreaks; Disease Susceptibility; Disulfides; Dithiothreitol; Dizocilpine Maleate; DNA Methylation; DNA-Binding Proteins; DNA, Bacterial; Dogs; Dose-Response Relationship, Drug; Double-Blind Method; Doublecortin Protein; Drosophila melanogaster; Droughts; Drug Carriers; Drug Combinations; Drug Delivery Systems; Drug Liberation; Drug Resistance; Drug Resistance, Bacterial; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Dust; Dynactin Complex; Dysferlin; Echo-Planar Imaging; Echocardiography; Edaravone; Egypt; Elasticity; Electrodes; Electrolytes; Emodin; Emtricitabine; Endometriosis; Endothelium, Vascular; Endotoxins; Energy Metabolism; Energy Transfer; Enterobacteriaceae; Enterococcus faecalis; Enterotoxigenic Escherichia coli; Environmental Monitoring; Enzyme Inhibitors; Epidemiologic Factors; Epigenesis, Genetic; Erythrocytes; Escherichia coli; Escherichia coli Infections; Escherichia coli Vaccines; Esophageal Neoplasms; Esophagectomy; Esophagogastric Junction; Esterases; Esterification; Ethanol; Ethiopia; Ethnicity; Eucalyptus; Evidence-Based Practice; Exercise; Exercise Tolerance; Extracorporeal Membrane Oxygenation; Family; Fatty Acids; Feedback; Female; Ferric Compounds; Fibrin Fibrinogen Degradation Products; Filtration; Fish Diseases; Flavonoids; Flavonols; Fluorodeoxyglucose F18; Follow-Up Studies; Food Microbiology; Food Preservation; Forests; Fossils; Free Radical Scavengers; Freund's Adjuvant; Fruit; Fungi; Gallium; Gender Identity; Gene Expression Regulation; Gene Expression Regulation, Neoplastic; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Genes, Bacterial; Genes, Plant; Genetic Predisposition to Disease; Genitalia; Genotype; Glomerulonephritis, IGA; Glottis; Glucocorticoids; Glucose; Glucuronides; Glutathione Transferase; Glycogen Synthase Kinase 3 beta; Gram-Negative Bacterial Infections; Gram-Positive Bacterial Infections; Grassland; Guinea Pigs; Half-Life; Head Kidney; Heart Atria; Heart Rate; Heart Septum; HEK293 Cells; Hematopoietic Stem Cells; Hemodynamics; Hep G2 Cells; Hepacivirus; Hepatitis C; Hepatitis C, Chronic; Hepatocytes; Hesperidin; High-Frequency Ventilation; High-Temperature Requirement A Serine Peptidase 1; Hippocampus; Hirudins; History, 20th Century; History, 21st Century; HIV Infections; Homeostasis; Hominidae; Housing, Animal; Humans; Hydrocarbons, Brominated; Hydrogen Bonding; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydroxybutyrates; Hydroxyl Radical; Hypertension; Hypothyroidism; Image Interpretation, Computer-Assisted; Immunoconjugates; Immunogenic Cell Death; Indoles; Infant, Newborn; Infant, Premature; Infarction, Middle Cerebral Artery; Inflammation; Inflammation Mediators; Infrared Rays; Inhibitory Concentration 50; Injections, Intravenous; Interferon-gamma; Interleukin-23; Interleukin-4; Interleukin-6; Intermediate Filaments; Intermittent Claudication; Intestine, Small; Iridoid Glucosides; Iridoids; Iron; Isomerism; Isotope Labeling; Isoxazoles; Itraconazole; Kelch-Like ECH-Associated Protein 1; Ketoprofen; Kidney Failure, Chronic; Kinetics; Klebsiella pneumoniae; Lactams, Macrocyclic; Lactobacillus; Lactulose; Lakes; Lamivudine; Laparoscopy; Laparotomy; Laryngoscopy; Leucine; Limit of Detection; Linear Models; Lipid A; Lipopolysaccharides; Listeria monocytogenes; Liver; Liver Cirrhosis; Logistic Models; Longitudinal Studies; Losartan; Low Back Pain; Lung; Lupinus; Lupus Erythematosus, Systemic; Machine Learning; Macular Degeneration; Madin Darby Canine Kidney Cells; Magnetic Phenomena; Magnetic Resonance Imaging; Magnetic Resonance Spectroscopy; Magnetics; Malaria, Falciparum; Male; Mannans; MAP Kinase Signaling System; Mass Spectrometry; Melatonin; Membrane Glycoproteins; Membrane Proteins; Meniscectomy; Menisci, Tibial; Mephenytoin; Mesenchymal Stem Cells; Metal Nanoparticles; Metal-Organic Frameworks; Methionine; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Nude; Mice, Obese; Mice, Transgenic; Microbial Sensitivity Tests; Microcirculation; MicroRNAs; Microscopy, Video; Microtubules; Microvascular Density; Microwaves; Middle Aged; Minimally Invasive Surgical Procedures; Models, Animal; Models, Biological; Models, Molecular; Models, Theoretical; Molecular Docking Simulation; Molecular Structure; Molecular Weight; Morus; Mouth Floor; Multicenter Studies as Topic; Multiple Sclerosis; Multiple Sclerosis, Relapsing-Remitting; Muscle, Skeletal; Myocardial Ischemia; Myocardium; NAD; NADP; Nanocomposites; Nanoparticles; Naphthols; Nasal Lavage Fluid; Nasal Mucosa; Neisseria meningitidis; Neoadjuvant Therapy; Neoplasm Invasiveness; Neoplasm Recurrence, Local; Neoplasms, Experimental; Neural Stem Cells; Neuroblastoma; Neurofilament Proteins; Neurogenesis; Neurons; New York; NF-E2-Related Factor 2; NF-kappa B; Nicotine; Nitriles; Nitrogen; Nitrogen Fixation; North America; Observer Variation; Occupational Exposure; Ochrobactrum; Oils, Volatile; Olea; Oligosaccharides; Omeprazole; Open Field Test; Optimism; Oregon; Oryzias; Osmolar Concentration; Osteoarthritis; Osteoblasts; Osteogenesis; Ovarian Neoplasms; Ovariectomy; Oxadiazoles; Oxidation-Reduction; Oxidative Stress; Oxygen; Ozone; p38 Mitogen-Activated Protein Kinases; Pakistan; Pandemics; Particle Size; Particulate Matter; Patient-Centered Care; Pelargonium; Peptides; Perception; Peripheral Arterial Disease; Peroxides; Pets; Pharmaceutical Preparations; Pharmacogenetics; Phenobarbital; Phenols; Phenotype; Phosphates; Phosphatidylethanolamines; Phosphines; Phospholipids; Phosphorus; Phosphorylation; Photoacoustic Techniques; Photochemotherapy; Photosensitizing Agents; Phylogeny; Phytoestrogens; Pilot Projects; Plant Components, Aerial; Plant Extracts; Plant Immunity; Plant Leaves; Plant Oils; Plants, Medicinal; Plasmodium berghei; Plasmodium falciparum; Platelet Activation; Platelet Function Tests; Pneumonia, Viral; Poaceae; Pogostemon; Poloxamer; Poly I; Poly(ADP-ribose) Polymerase Inhibitors; Polychlorinated Biphenyls; Polychlorinated Dibenzodioxins; Polycyclic Compounds; Polyethylene Glycols; Polylysine; Polymorphism, Genetic; Polymorphism, Single Nucleotide; Population Dynamics; Portasystemic Shunt, Transjugular Intrahepatic; Positron Emission Tomography Computed Tomography; Postoperative Complications; Postprandial Period; Potassium Cyanide; Predictive Value of Tests; Prefrontal Cortex; Pregnancy; Prepulse Inhibition; Prevalence; Procalcitonin; Prodrugs; Prognosis; Progression-Free Survival; Proline; Proof of Concept Study; Prospective Studies; Protein Binding; Protein Conformation; Protein Domains; Protein Folding; Protein Multimerization; Protein Sorting Signals; Protein Structure, Secondary; Proton Pump Inhibitors; Protozoan Proteins; Psychometrics; Pulse Wave Analysis; Pyridines; Pyrrolidines; Quality of Life; Quantum Dots; Quinoxalines; Quorum Sensing; Radiopharmaceuticals; Rain; Random Allocation; Randomized Controlled Trials as Topic; Rats; Rats, Sprague-Dawley; Rats, Wistar; RAW 264.7 Cells; Reactive Oxygen Species; Receptor, Angiotensin, Type 1; Receptor, PAR-1; Receptors, CXCR4; Receptors, Estrogen; Receptors, Glucocorticoid; Receptors, Interleukin-1; Receptors, Interleukin-17; Receptors, Notch; Recombinant Fusion Proteins; Recombinant Proteins; Reducing Agents; Reflex, Startle; Regional Blood Flow; Regression Analysis; Reperfusion Injury; Reproducibility of Results; Republic of Korea; Respiratory Tract Diseases; Retrospective Studies; Reverse Transcriptase Inhibitors; Rhinitis, Allergic; Risk Assessment; Risk Factors; Rituximab; RNA, Messenger; RNA, Ribosomal, 16S; ROC Curve; Rosmarinic Acid; Running; Ruthenium; Rutin; Sarcolemma; Sarcoma; Sarcopenia; Sarcoplasmic Reticulum; SARS-CoV-2; Scavenger Receptors, Class A; Schools; Seasons; Seeds; Sequence Analysis, DNA; Severity of Illness Index; Sex Factors; Shock, Cardiogenic; Short Chain Dehydrogenase-Reductases; Signal Transduction; Silver; Singlet Oxygen; Sinusitis; Skin; Skin Absorption; Small Molecule Libraries; Smoke; Socioeconomic Factors; Soil; Soil Microbiology; Solid Phase Extraction; Solubility; Solvents; Spain; Spectrometry, Mass, Electrospray Ionization; Spectroscopy, Fourier Transform Infrared; Speech; Speech Perception; Spindle Poles; Spleen; Sporothrix; Staphylococcal Infections; Staphylococcus aureus; Stereoisomerism; Stomach Neoplasms; Stress, Physiological; Stroke Volume; Structure-Activity Relationship; Substrate Specificity; Sulfonamides; Surface Properties; Surface-Active Agents; Surveys and Questionnaires; Survival Rate; T-Lymphocytes, Cytotoxic; Tandem Mass Spectrometry; Temperature; Tenofovir; Terpenes; Tetracycline; Tetrapleura; Textiles; Thermodynamics; Thiobarbituric Acid Reactive Substances; Thrombin; Thyroid Hormones; Thyroid Neoplasms; Tibial Meniscus Injuries; Time Factors; Tissue Distribution; Titanium; Toluidines; Tomography, X-Ray Computed; Tooth; Tramadol; Transcription Factor AP-1; Transcription, Genetic; Transfection; Transgender Persons; Translations; Treatment Outcome; Triglycerides; Ubiquinone; Ubiquitin-Specific Proteases; United Kingdom; United States; Up-Regulation; Vascular Stiffness; Veins; Ventricular Remodeling; Viral Load; Virulence Factors; Virus Replication; Vitis; Voice; Voice Quality; Wastewater; Water; Water Pollutants, Chemical; Water-Electrolyte Balance; Weather; Wildfires; Wnt Signaling Pathway; Wound Healing; X-Ray Diffraction; Xenograft Model Antitumor Assays; Young Adult; Zoogloea | 2022 |
Impact of phenolic-rich olive leaf extract on blood pressure, plasma lipids and inflammatory markers: a randomised controlled trial.
Dietary polyphenols have been demonstrated to favourably modify a number of cardiovascular risk markers such as blood pressure (BP), endothelial function and plasma lipids. We conducted a randomised, double-blind, controlled, crossover trial to investigate the effects of a phenolic-rich olive leaf extract (OLE) on BP and a number of associated vascular and metabolic measures.. A total of 60 pre-hypertensive [systolic blood pressure (SBP): 121-140 mmHg; diastolic blood pressure (DBP): 81-90 mmHg] males [mean age 45 (±SD 12.7 years, BMI 26.7 (±3.21) kg/m. Daytime [-3.95 (±SD 11.48) mmHg, p = 0.027] and 24-h SBP [-3.33 (±SD 10.81) mmHg, p = 0.045] and daytime and 24-h DBP [-3.00 (±SD 8.54) mmHg, p = 0.025; -2.42 (±SD 7.61) mmHg, p = 0.039] were all significantly lower following OLE intake, relative to the control. Reductions in plasma total cholesterol [-0.32 (±SD 0.70) mmol/L, p = 0.002], LDL cholesterol [-0.19 (±SD 0.56) mmol/L, p = 0.017] and triglycerides [-0.18 (±SD 0.48), p = 0.008] were also induced by OLE compared to control, whilst a reduction in interleukin-8 [-0.63 (±SD 1.13) pg/ml; p = 0.026] was also detected. Other markers of inflammation, vascular function and glucose metabolism were not affected.. Our data support previous research, suggesting that OLE intake engenders hypotensive and lipid-lowering effects in vivo. Topics: Adult; Aged; Biomarkers; Blood Pressure; Body Mass Index; C-Reactive Protein; Cholesterol; Cross-Over Studies; Cytokines; Double-Blind Method; Humans; Inflammation; Iridoid Glucosides; Iridoids; Male; Middle Aged; Olea; Plant Extracts; Plant Leaves; Polyphenols; Risk Factors; Triglycerides; Young Adult | 2017 |
Secoiridoids delivered as olive leaf extract induce acute improvements in human vascular function and reduction of an inflammatory cytokine: a randomised, double-blind, placebo-controlled, cross-over trial.
The leaves of the olive plant (Olea europaea) are rich in polyphenols, of which oleuropein and hydroxytyrosol (HT) are most characteristic. Such polyphenols have been demonstrated to favourably modify a variety of cardiovascular risk factors. The aim of the present intervention was to investigate the influence of olive leaf extract (OLE) on vascular function and inflammation in a postprandial setting and to link physiological outcomes with absorbed phenolics. A randomised, double-blind, placebo-controlled, cross-over, acute intervention trial was conducted with eighteen healthy volunteers (nine male, nine female), who consumed either OLE (51 mg oleuropein; 10 mg HT), or a matched control (separated by a 4-week wash out) on a single occasion. Vascular function was measured by digital volume pulse (DVP), while blood collected at baseline, 1, 3 and 6 h was cultured for 24 h in the presence of lipopolysaccharide in order to investigate effects on cytokine production. Urine was analysed for phenolic metabolites by HPLC. DVP-stiffness index and ex vivo IL-8 production were significantly reduced (P< 0.05) after consumption of OLE compared to the control. These effects were accompanied by the excretion of several phenolic metabolites, namely HT and oleuropein derivatives, which peaked in urine after 8-24 h. The present study provides the first evidence that OLE positively modulates vascular function and IL-8 production in vivo, adding to growing evidence that olive phenolics could be beneficial for health. Topics: Biological Availability; Blood Vessels; Cross-Over Studies; Cytokines; Double-Blind Method; Female; Humans; Inflammation; Iridoid Glucosides; Iridoids; Male; Olea; Phenols; Placebos; Plant Extracts; Plant Leaves; Pulse; Vascular Stiffness | 2015 |
93 other study(ies) available for iridoids and Inflammation
Article | Year |
---|---|
Monotropein attenuates doxorubicin-induced oxidative stress, inflammation, and arrhythmia via the AKT signal pathway.
As a glycoside iridoid, monotropein (MON) has a wide range of pharmacological properties, including anti-inflammatory, antioxidant, and anti-apoptotic effects. However, few studies have investigated MON's cardiovascular protective effects. Therefore, this study aimed to explore the role of MON in doxorubicin (DOX)-induced cardiotoxicity. To establish the myocardial toxicity model, mice were intraperitoneally injected with DOX. After admimistration of DOX, myocardial injury markers were increased, cardiac function was reduced, and pathological changes were observed in the myocardium, indicating successful construction of the myocardial injury model. Our study showed that MON treatment mitigated DOX-induced myocardial damage and improved cardiac dysfunction. In addition, DOX-treated mice displayed higher levels of inflammation and oxidative stress, while MON treatment also reversed these pathological changes. Moreover, DOX-treated mice were more susceptible to ventricular fibrillation, whereas MON reduced ventricular fibrillation incidence. Further studies have shown that MON could reverse DOX-induced inhibition of the AKT signaling pathway. Besides, the application of AKT inhibitor could partially abolish MON's cardioprotective effects. To conclude, this study demonstrated the ability of MON to reduce DOX-induced myocardial damage, cardiac dysfunction, inflammation, and oxidative stress, as well as ventricular fibrillation risk. These may attributable to the activation of the AKT pathway. Topics: Animals; Apoptosis; Arrhythmias, Cardiac; Doxorubicin; Inflammation; Iridoids; Mice; Myocytes, Cardiac; Oxidative Stress; Proto-Oncogene Proteins c-akt; Signal Transduction; Ventricular Fibrillation | 2023 |
Gardenoside ameliorates inflammation and inhibits ECM degradation in IL-1β-treated rat chondrocytes via suppressing NF-κB signaling pathways.
Osteoarthritis (OA) places a significant burden on society and finance, and there is presently no effective treatment beside late replacement surgery and symptomatic relief. The therapy of OA requires additional research. Gardenoside is a naturally compound extracted from Gardenia jasminoides Ellis, which has a variety of anti-inflammatory effects. However, few studies have been conducted to determine the role of gardenoside in OA. This study aimed to explore whether gardenoside has effect in OA treatment. Rat primary chondrocytes were treated with IL-1β to simulate inflammatory environmental conditions and OA in vitro. We examined the effects of gardenoside at concentrations ranging from 0 to 200 μM on the viability of rat chondrocytes and selected 10 μM for further study. Via in vitro experiments, our study found that gardenoside lowers the gene expression of COX-2, iNOS, IL-6, and reduced the ROS production of chondrocytes induced by IL-1β. Moreover, it effectively alleviates ECM degradation caused by IL-1β and promotes the ECM synthesis in chondrocytes by upregulating collagen-II and the ACAN expression, downregulating the expression of MMP-3, MMP-13, and ADAMTS-5 expression. Further, our study showed that gardenoside inhibits NF-κB signaling pathway activated by IL-1β in chondrocytes. We established an OA rat model by anterior cruciate ligament transection (ACLT). The animals were then periodically injected with gardenoside into the knee articular cavity. In vivo study suggested that gardenoside attenuates OA progression in rats. As a whole, in vitro and in vivo results highlight gardenoside is a promising OA treatment agent. Topics: Animals; Cells, Cultured; Chondrocytes; Extracellular Matrix; Inflammation; Interleukin-1beta; Iridoids; NF-kappa B; Osteoarthritis; Rats; Signal Transduction | 2023 |
Cornelian Cherry (
Topics: Animals; Anthocyanins; Atherosclerosis; Cholesterol, Dietary; Cornus; Diet, Atherogenic; Fruit; Inflammation; Intercellular Adhesion Molecule-1; Interleukin-6; Iridoids; Matrix Metalloproteinase 1; Plant Extracts; Rabbits; RNA, Messenger; Vascular Cell Adhesion Molecule-1 | 2023 |
Iridoids from Morinda lucida, (Benth.) Rubiaceae, produced analgesic and anti-inflammatory activities via agonism at the kappa and delta opioid receptors, inhibition of COX-2 besides elevation of CAT and SOD activities.
Pain and inflammation are the major symptoms of almost every human disease. Herbal preparations from Morinda lucida are used to treat pain and inflammation in traditional medicine. However, the analgesic and anti-inflammatory activities of some of the plant's chemical constituents are not known.. The aim of this study is to evaluate the analgesic and anti-inflammatory activities and possible mechanisms of these activities of iridoids from Morinda lucida.. The compounds were isolated using column chromatography and characterized by NMR spectroscopy and LC-MS. Anti-inflammatory activity was evaluated using carrageenan-induced paw edema. Whereas, the analgesic activity was assessed in the hot plate and acetic acid-induced writhing assays. Mechanistic studies were conducted using pharmacological blockers, determination of antioxidant enzymes, lipid peroxidation, and docking studies.. The iridoid, ML2-2 exhibited inverse dose-dependent anti-inflammatory activity (42.62% maximum at 2 mg/kg p. o). ML2-3 produced dose-dependent anti-inflammatory activity (64.52% maximum at 10 mg/kg p. o.). Anti-inflammatory activity of diclofenac sodium was 58.60% at 10 mg/kg p. o. Furthermore, ML2-2 and ML2-3 produced analgesic activity (P < 0.01) of 44.44 ± 5.84 and 54.18 ± 19.01%. at 10 mg/kg p. o. respectively in the hot plate assay and 64.88 and 67.44% in the writhing assay. ML2-2 significantly elevated catalase activity. However, ML2-3 elevated SOD and catalase activity significantly. In the docking studies, both iridoids formed stable crystal complexes with delta and kappa opioid receptors, and the COX-2 enzyme with very low free binding energies (ΔG) from -11.2 to -14.0 kcal/mol. However, they did not bind with the mu opioid receptor. The lower bound RMSD of most of the poses were found to be ≤ 2. Several amino acids were involved in the interactions through various inter molecular forces.. These results indicate that ML2-2 and ML2-3 possessed very significant analgesic and anti-inflammatory activities via acting as both delta and kappa opioid receptor agonist, elevation of anti-oxidant activity and inhibition of COX-2. Topics: Analgesics; Anti-Inflammatory Agents; Antioxidants; Carrageenan; Catalase; Cyclooxygenase 2; Edema; Humans; Inflammation; Iridoids; Morinda; Pain; Plant Extracts; Receptors, Opioid, delta; Rubiaceae; Superoxide Dismutase | 2023 |
Verproside, the Most Active Ingredient in YPL-001 Isolated from
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease which causes breathing problems. YPL-001, consisting of six iridoids, has potent inhibitory efficacy against COPD. Although YPL-001 has completed clinical trial phase 2a as a natural drug for COPD treatment, the most effective iridoid in YPL-001 and its mechanism for reducing airway inflammation remain unclear. To find an iridoid most effectively reducing airway inflammation, we examined the inhibitory effects of the six iridoids in YPL-001 on TNF or PMA-stimulated inflammation (IL-6, IL-8, or MUC5AC) in NCI-H292 cells. Here, we show that verproside among the six iridoids most strongly suppresses inflammation. Both TNF/NF-κB-induced MUC5AC expression and PMA/PKCδ/EGR-1-induced IL-6/-8 expression are successfully reduced by verproside. Verproside also shows anti-inflammatory effects on a broad range of airway stimulants in NCI-H292 cells. The inhibitory effect of verproside on the phosphorylation of PKC enzymes is specific to PKCδ. Finally, in vivo assay using the COPD-mouse model shows that verproside effectively reduces lung inflammation by suppressing PKCδ activation and mucus overproduction. Altogether, we propose YPL-001 and verproside as candidate drugs for treating inflammatory lung diseases that act by inhibiting PKCδ activation and its downstream pathways. Topics: Animals; Epithelial Cells; Humans; Inflammation; Interleukin-6; Iridoids; Lung; Mice; NF-kappa B; Protein Kinase C-delta; Pulmonary Disease, Chronic Obstructive | 2023 |
Geniposide augments apoptosis in fibroblast-like synoviocytes by restoring hypoxia-enhanced JNK-BNIP3-mediated autophagy.
As the main effector cells of chronic inflammation and hyperplasia of synovium, fibroblast-like synoviocytes (FLSs) show abnormal proliferation and insufficient apoptosis in the hypoxic microenvironment, which is due to the increase of BNIP3-mediated autophagy. This study aimed to explore the mechanism of geniposide (GE) on hypoxia-induced hyper-proliferative FLSs with a focus on autophagy and the JNK-BNIP3 pathway.. The dynamic changes of autophagy, apoptosis, and hypoxia-related proteins in adjuvant arthritis (AA) rats were detected by immunohistochemistry and Western blot. The proliferation, autophagy, apoptosis, and mitochondrial state of FLSs were detected by CCK-8, flow cytometry, immunofluorescence, and transmission electron microscopy, respectively. Western blot, qRT-PCR, and co-immunoprecipitation were used to detect the expression of the JNK-BNIP3 pathway.. The excessive accumulation of BNIP3 in the synovium of AA rats was accompanied by inhibition of apoptosis and an increase in autophagy. GE inhibited the expression of BNIP3, enhanced apoptosis, decreased autophagy, and improved chronic inflammation and hyperplasia of synovium. The amount of autophagy under different oxygen concentrations was the key to mediating the different survival rates of FLSs, and the inhibition of autophagy triggered apoptosis. GE suppressed the proliferation of FLSs and down-regulated autophagy, leading to the accumulation of ROS and the decrease of mitochondrial membrane potential, induced the increase of apoptosis, and suppressed the accumulation of BNIP3 and the hyperphosphorylation of JNK.. GE inhibited autophagy by restoring the hypoxia-induced activated JNK-BNIP3 pathway, inducing mitochondrial oxidative damage, augmented apoptosis, and decreased survival rate of FLSs. Topics: Animals; Apoptosis; Arthritis, Experimental; Autophagy; Fibroblasts; Hyperplasia; Hypoxia; Inflammation; Iridoids; Membrane Proteins; Mitochondrial Proteins; Rats; Synoviocytes | 2023 |
Optimization for ultrasonic-microwave synergetic extraction of total iridoid glycosides and screening of analgesic and anti-inflammatory active fractions from patrinia scabra Bunge (Valerianaceae).
Patrinia scabra Bunge is a well-known herbal medicine for its favorable treatment on inflammatory diseases owing to its effective ingredients, in which iridoid glycoside plays an extremely significant role. This article aimed to improve the content of total iridoid glycosides in crude extract through a series optimization of extraction procedure. Moreover, considering that both pain and inflammation are two correlated responses triggered in response to injury, irritants or pathogen, the article investigated the anti-inflammatory and analgesic activities of P. scabra to screen out the active fraction.. P. scabra was extracted by ultrasonic-microwave synergistic extraction (UMSE) to obtain total iridoid glycosides (PSI), during which a series of conditions were investigated based on single-factor experiments. The extraction process was further optimized by a reliable statistical method of response surface methodology (RSM). The elution fractions of P. scabra extract were prepared by macroporous resin column chromatography. Through the various animal experiment including acetic acid-induced writhing test, formalin induced licking and flinching, carrageenan-induced mice paw oedema test and xylene-induced ear edema in mice, the active fractions with favorable analgesic and anti-inflammatory effect were reasonably screen out.. The content of PSI could reach up to 81.42 ± 0.31 mg/g under the optimum conditions as follows: ethanol concentration of 52%, material-to-liquid ratio of 1:18 g/mL, microwave power at 610 W and extraction time of 45 min. After gradient elution by the macroporous resin, the content of PSI increased significantly. Compared with other concentrations of elution liquid, the content of PSI in 30 and 50% ethanol eluate was increased to reach 497.65 and 506.90 mg/g, respectively. Owing to the pharmacology experiment, it was reasonably revealed that 30 and 50% ethanol elution fractions of P. scabra could relieve pain centrally and peripherally, exhibiting good analgesic and anti-inflammatory activities.. Patrinia scabra possessed rich iridoids and exhibited significant analgesic and anti-inflammatory activities. Topics: Analgesics; Animals; Anti-Inflammatory Agents; Inflammation; Iridoid Glycosides; Iridoids; Mice; Microwaves; Pain; Patrinia; Phytotherapy; Plants, Medicinal; Ultrasonics | 2022 |
Synthesis and biological evaluation of geniposide derivatives as inhibitors of hyperuricemia, inflammatory and fibrosis.
Topics: Animals; Fibrosis; Hyperuricemia; Inflammation; Iridoids; Kidney Diseases; Mice; Molecular Docking Simulation; Transforming Growth Factor beta; Uric Acid; Xanthine Oxidase | 2022 |
A geniposide-phospholipid complex ameliorates posthyperuricemia chronic kidney disease induced by inflammatory reactions and oxidative stress.
Hyperuricemia is a common metabolic disease and is one of the factors that could induce chronic kidney disease (CKD). Geniposide (GEN) is a typical natural iridoid glucoside compound with a series of biological activities, but the poor bioavailability of GEN limits its clinical application. In this context, the pharmacological activity of the geniposide-phospholipid complex (GEN-PLC) in ameliorating posthyperuricemia CKD was evaluated by in vitro and in vivo experiments in this study. In vitro cell experiments showed that GEN-PLC treatment markedly decreased inflammatory cytokine levels and reactive oxygen species levels compared with those of GEN in uric acid-treated HKC cells. In vivo research results confirmed that a high concentration of uric acid could cause CKD by increasing inflammatory cytokines and reactive oxygen species in hyperuricemic mice. At the same time, GEN-PLC could regulate the PI3K/AKT/NF-κB and Keap1/Nrf2/HO-1 signaling pathways to effectively inhibit the inflammatory response and oxidative stress, thereby ameliorating posthyperuricemia CKD, and the therapeutic effect was better than that of GEN. In addition, the preparation technology of GEN-PLC was optimized, and the physiochemical analysis explained the intermolecular interactions of the two components. Based on the research results, GEN-PLC could enhance the bioavailability of GEN and become a promising candidate for clinical drug development. Topics: Animals; Inflammation; Iridoids; Kelch-Like ECH-Associated Protein 1; Mice; NF-E2-Related Factor 2; Oxidative Stress; Phosphatidylinositol 3-Kinases; Phospholipids; Reactive Oxygen Species; Renal Insufficiency, Chronic; Uric Acid | 2022 |
A novel iridoid glycoside leonuride (ajugol) attenuates airway inflammation and remodeling through inhibiting type-2 high cytokine/chemokine activity in OVA-induced asthmatic mice.
Asthma is a chronic airway disorder with a hallmark feature of airflow obstruction that associated with the remodeling and inflammation in the airway wall. Effective therapy for controlling both remodeling and inflammation is still urgently needed. Leonuride is the main pharmacological component identified from Bu-Shen-Yi-Qi-Tang (BSYQT) which has been traditionally used in treatment of lung diseases. However, no pharmacological effects of leonuride in asthma were reported.. Here we aimed to investigated whether leonuride provided a therapeutic efficacy in reversing asthma airway remodeling and inflammation and uncover the underlying mechanisms.. Mouse models of chronic asthma were developed with ovalbumin (OVA) exposure for 8 weeks. Respiratory mechanics, lung histopathology and asthma-related cytokines were examined. Lung tissues were analyzed using RNA sequencing to reveal the transcriptional profiling changes.. After oral administration with leonuride (15 mg/kg or 30 mg/kg), mice exhibited a lower airway hyperresponsiveness in comparison to asthmatic mice. Leonuride suppressed airway inflammation evidenced by the significant reductions in accumulation of inflammatory cells around bronchi and vessels, leukocyte population counts and the abundance of type 2 inflammatory mediators (OVA specific IgE, IL-4, IL-5 and IL-13) in bronchoalveolar lavage fluid (BALF). On the other hand, leonuride slowed down the process of active remodeling as demonstrated by weaker goblet cell metaplasia and subepithelial fibrosis in lung histopathology and lower transforming growth factor (TGF)-β1 levels in serum and BALF in comparison to mice treated with OVA only. Furthermore, we uncovered transcriptional profiling alternations in lung tissue of mice after OVA exposure and leonuride treatment. Gene sets belonging to type-2 cytokine/chemokine activity stood out in leonuride target transcripts. Those upregulated (Bmp10, Ccl12, Ccl22, Ccl8, Ccl9, Cxcl15, Il13, Il33, Tnfrsf9, Il31ra, Il5ra, Il13ra2 and Ccl24) or downregulated (Acvr1c and Il18) genes in asthmatic mice, were all reversely regulated by leonuride treatment.. Our results revealed the therapeutic efficacy of leonuride in experimental chronic asthma for the first time, and implied that its anti-inflammatory and antifibrotic properties might be mediated by regulation of type-2 high cytokine/chemokines responses. Topics: Animals; Asthma; Bronchoalveolar Lavage Fluid; Chemokines; Cytokines; Disease Models, Animal; Inflammation; Iridoid Glycosides; Iridoids; Lung; Mice; Mice, Inbred BALB C; Ovalbumin; Pyrans | 2022 |
Cornuside Is a Potential Agent against Alzheimer's Disease via Orchestration of Reactive Astrocytes.
Topics: Alzheimer Disease; Animals; Astrocytes; Glucosides; Inflammation; Iridoids; Mice; NF-E2-Related Factor 2; NF-kappa B; Oxidative Stress; Proto-Oncogene Proteins c-akt; Pyrans | 2022 |
Amarogentin has protective effects against sepsis-induced brain injury via modulating the AMPK/SIRT1/NF-κB pathway.
Amarogentin (AMA), a secoiridoid glycoside that is mainly derived from SwertiaandGentiana roots, has been confirmed to exhibit antioxidative, tumor-suppressive and anti-diabetic properties. This research intends to investigate the protective effect of AMA against sepsis-induced brain injury and its mechanism. NSC-34 and HT22 cells were treated with lipopolysaccharide (LPS) to induce an in-vitro sepsis model and then treated with varying concentrations (1, 5, 10 µM) of AMA. Cell proliferation and apoptosis were evaluated. The intensity of inflammation and oxidative stress were assessed by different methods. The AMPK/SIRT1/NF-κB pathway expression was determined by WB. An in-vitro sepsis model was set up with cecal ligation and puncture (CLP) in adult C57/BL6J mice, and different concentrations (25, 50, 100 mg/kg) of AMA were applied for treatment. Neurological function was evaluated using the modified neurological severity scores (mNSS), and the brain tissue damage was measured using hematoxylin-eosin (H&E) staining and Nissl staining. Tissue apoptosis was tested using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Then, the AMPK inhibitor Compound C (CC) was administered to confirm AMA-mediated mechanism. Our finding illustrated that AMA mitigated LPS-induced neuronal damage, inflammation and oxidative stress, activated the AMPK/SIRT1 pathway and choked NF-κB phosphorylation. Furthermore, AMA improved neurological functions of sepsis mice by reliving neuroinflammation and oxidative stress. Inhibition of AMPK attenuated the protective effect of AMA on neurons or the mice's brain tissues. In conclusion, AMA protected against sepsis-induced brain injury by modulating the AMPK/SIRT1/NF-κB pathway. Topics: AMP-Activated Protein Kinases; Animals; Brain Injuries; DNA Nucleotidylexotransferase; Eosine Yellowish-(YS); Hematoxylin; Inflammation; Iridoid Glycosides; Iridoids; Lipopolysaccharides; Mice; NF-kappa B; Sepsis; Signal Transduction; Sirtuin 1 | 2022 |
Loganin attenuates interleukin-1
Inflammation plays a crucial part in osteoarthritis (OA) development. This work aimed to explore loganin's role and molecular mechanism in inflammation and clarify its anti-inflammatory effects in OA treatment.. Chondrocytes were stimulated using interleukin (IL)-1β and loganin at two concentrations (1 μM and 10 μM). Nitric oxide (NO) and prostaglandin E2 (PGE2) expression was assessed. Real-time polymerase chain reaction was used to evaluate inducible NO synthase (iNOS), cyclooxygenase (COX)-2, IL-6, and tumor necrosis factor (TNF)-α mRNA levels. Western blot was used to investigate TLR4, MyD88, p-p65, and IκB-α expression. p65 nuclear translocation, synovial inflammatory response, and cartilage degeneration were also assessed.. Loganin significantly reduced IL-1β-mediated PGE2, NO, iNOS, and COX-2 expression compared with that of the IL-1β stimulation group. The TLR4/MyD88/NF-κB pathway was suppressed by loganin, which decreased inflammatory cytokine (TNF-α and IL-6) levels compared with those of the IL-1β stimulation group. Loganin inhibited IL-1β-mediated NF-κB p65 nuclear translocation compared with that of the IL-1β stimulation group. Loganin partially suppressed cartilage degeneration and the synovial inflammatory response. This work demonstrated that loganin inhibited IL-1β-mediated inflammation in rat chondrocytes through TLR4/MyD88/NF-κB pathway regulation, thereby reducing rat cartilage degeneration and the synovial inflammatory response. Topics: Animals; Cartilage; Chondrocytes; Cyclooxygenase 2; Dinoprostone; Inflammation; Interleukin-1beta; Interleukin-6; Iridoids; Myeloid Differentiation Factor 88; NF-kappa B; Nitric Oxide; Osteoarthritis; Rats; Signal Transduction; Toll-Like Receptor 4; Tumor Necrosis Factor-alpha | 2022 |
Cornus iridoid glycoside alleviates sepsis-induced acute lung injury by regulating NF-κB and Nrf2/HO-1 pathways.
Sepsis-induced acute lung injury (ALI) is a syndrome associated with inflammation. Cornus iridoid glycoside (CIG), a bioactive component isolated from Corni Fructus, exhibits anti-inflammatory activities. However, the function and underlying mechanisms of CIG in mice with sepsis-induced ALI remain elusive.. The sepsis-elicited ALI model of mice was established by the induction of cecal ligation and puncture (CLP). The wet/dry (W/D) ratio of lung tissues was examined, and the pathological alterations were determined by hematoxylin and eosin staining. The. CLP enhanced W/D ratio and aggravated pathological changes and scores in mice, which were obviously alleviated by the two concentrations of CIG treatment. CIG treatment notably decreased the CLP-induced mRNA expressions and serum levels of IL-1β, IL-6, TNF-α, and MDA, but enhanced the decreased concentrations (caused by CLP) of SOD and GSH-Px. Moreover, CIG treatment significantly decreased the ratios of p65/p-p65 and IκBα/p-IκBα caused by CLP, but aggravated the CLP-induced relative protein levels of Nrf2 and HO-1.. CIG obviously ameliorated the sepsis-induced ALI in mice by suppressing inflammation and oxidative stress, which was closely associated with nuclear factor Topics: Acute Lung Injury; Animals; Cornus; Inflammation; Interleukin-6; Iridoid Glycosides; Iridoids; Mice; NF-E2-Related Factor 2; NF-kappa B; NF-KappaB Inhibitor alpha; RNA, Messenger; Sepsis; Superoxide Dismutase; Tumor Necrosis Factor-alpha | 2022 |
[Effects of triterpenoid and iridoid of Eucommiae Cortex on collagen-induced arthritis in rats].
The ethyl acetate fraction of ethanol extract of Eucommiae Cortex can effectively inhibit joint inflammation and bone destruction in rats with collagen-induced arthritis(CIA) and has a potential therapeutic effect on rheumatoid arthritis. The triterpenoid(EU-Tid) and iridoid(EU-Idd) of Eucommiae Cortex are derivatives isolated from the ethyl acetate fraction of the ethanol extract of Eucommiae Cortex, and it is not clear whether they have inhibitory effects on joint inflammation and bone erosion in CIA rats. Therefore, based on the CIA model, the effects of EU-Tid, EU-Idd, and their combination(EU-TP) on arthritis in rats were observed, and the material basis of Eucommiae Cortex against arthritis was further clarified. The samples were collected two and four weeks after administration to observe the pathological changes in different stages of arthritis in CIA rats. For the rats in the model control group, with the prolongation of the disease course, the paw volume and arthritis score increased and histopathological lesions aggravated. Compared with the model control group, the drug administration groups showed reduced paw volumes and arthritis scores, and improved joint lesions and cartilage destruction. Additionally, the mRNA expression levels of tumor necrosis factor-α(TNF-α), interleukin-17(IL-17), and interleukin-23(IL-23) in the spleen were down-regulated in the drug administration groups. EU-TP and EU-Tid at concentrations of 160 and 320 μg·mL~(-1) could significantly inhibit the proliferation of human fibroblast-like synoviocytes-RA(HFLS-RA) and nitric oxide(NO) release in the supernatant of RAW264.7 cells induced by lipopolysaccharide(LPS) at the concentration range of 10-80 μg·mL~(-1) in vitro. EU-Idd had no effect on the proliferation of HFLS-RA but could reduce the NO release at concentrations of 40 and 80 μg·mL~(-1). The results indicated that the terpenoids of Eucommiae Cortex had great potential in the treatment of rheumatoid arthritis. Topics: Animals; Arthritis, Experimental; Arthritis, Rheumatoid; Cytokines; Ethanol; Humans; Inflammation; Iridoids; Plant Extracts; Rats; Triterpenes; Tumor Necrosis Factor-alpha | 2022 |
Loganin Ameliorates Painful Diabetic Neuropathy by Modulating Oxidative Stress, Inflammation and Insulin Sensitivity in Streptozotocin-Nicotinamide-Induced Diabetic Rats.
Loganin is an iridoid glycoside with antioxidant, anti-inflammatory, glucose-lowering activities which may address the pathological mechanisms of painful diabetic neuropathy (PDN) related to inflammation, oxidative stress, and hyperglycemia. This study investigated the underlying mechanisms of action of loganin on PDN. The in vivo model of PDN was established by streptozotocin-nicotinamide (STZ-NA) induction in Sprague Dawley (SD) rats. Subsequently, loganin (5 mg/kg) was administered by daily intraperitoneal injection. High-glucose stimulated human SH-SY5Y cells co-incubated with loganin were used to mimic the in vitro model of PDN. Loganin improved PDN rats' associated pain behaviors (allodynia and hyperalgesia), insulin resistance index (HOMA-IR), and serum levels of superoxide dismutase (SOD), catalase and glutathione. Loganin also reduced pain-associated channel protein Ca Topics: Animals; Antioxidants; Behavior, Animal; Blood Glucose; Body Weight; Calcitonin Gene-Related Peptide; Calcium Channels, T-Type; Cell Line, Tumor; Diabetes Mellitus, Experimental; Diabetic Neuropathies; Fasting; Humans; Hyperglycemia; Inflammation; Inflammation Mediators; Insulin; Insulin Resistance; Iridoids; Male; Neuralgia; Neuroglia; NF-kappa B; Niacinamide; Oxidative Stress; Rats, Sprague-Dawley; Signal Transduction; Spinal Cord Dorsal Horn; Streptozocin | 2021 |
Geniposide Attenuates Hyperglycemia-Induced Oxidative Stress and Inflammation by Activating the Nrf2 Signaling Pathway in Experimental Diabetic Retinopathy.
Geniposide (GEN) is a natural antioxidant and anti-inflammatory product and plays an important role in the treatment of diabetes and diabetic complications. To explore the biological functions and mechanism of GEN in diabetic retinopathy (DR), we constructed the in vitro and in vivo model of DR by using primary cultured mouse retinal Müller cells and C57BL/6 mice, respectively. We found that GEN inhibited ROS accumulation, NF- Topics: Animals; Diabetes Mellitus, Experimental; Diabetic Retinopathy; Ependymoglial Cells; Hyperglycemia; Inflammation; Iridoids; Male; Mice; Mice, Inbred C57BL; NF-E2-Related Factor 2; Oxidative Stress; Reactive Oxygen Species | 2021 |
Dietary Flavone Baicalein Combinate with Genipin Attenuates Inflammation Stimulated by Lipopolysaccharide in RAW264.7 Cells or
Mounting evidence has shown that single-targeted therapy might be inadequate to achieve satisfactory effects. Thus, drug combinations are gaining attention as they can regulate multiple targets to obtain more beneficial effects. Heat shock protein 90 (HSP90) is a molecular chaperone that assists the protein assembly and folding of client proteins and maintains their stability. Interfering with the interaction between HSP90 and its client proteins by inhibiting the latter's activity may offer a new approach toward combination therapy. The HSP90 client protein AKT plays an important role in the inflammatory response syndrome caused by infections. In this study, the dietary flavone baicalein was identified as a novel inhibitor of HSP90 that targeted the N-terminal ATP binding pocket of HSP90 and hindered the chaperone cycle, resulting in AKT degradation. Combining baicalein with genipin, which was extracted from Topics: Animals; Antioxidants; Cholagogues and Choleretics; Diet; Drug Delivery Systems; Drug Therapy, Combination; Flavanones; Gene Expression Regulation; HSP90 Heat-Shock Proteins; Inflammation; Iridoids; Lipopolysaccharides; Male; Mice; Phosphorylation; Proto-Oncogene Proteins c-akt; Pseudomonas aeruginosa; Pseudomonas Infections; Random Allocation; RAW 264.7 Cells | 2021 |
More than 17 million people in the US provide uncompensated care for adults with physical or cognitive limitations. Such caregiving is associated with worse mental and physical health, yet little research has investigated how publicly funded home care might ameliorate these harms.. To investigate the association between Medicaid home care services and family caregivers' health.. This longitudinal cohort study used data from the 1996 to 2017 Medical Expenditures Panel Survey. Data on all household members were collected in 5 interviews over 2 years. Person-level difference-in-difference models were used to isolate within-person changes associated with new onset of Medicaid home care. The Medical Expenditures Panel Survey longitudinal data sets included 331 202 individuals (approximately 10% excluded owing to loss to follow-up). Adult (age ≥21 years) members of households that contained at least 1 person with limited activities of daily living were included in our study. The analysis itself was performed from March to August of 2020.. New onset of regular (≥1 time per month) Medicaid home care in the household.. Self-rated mental and physical health (planned prior to beginning the study).. In this cohort study, Medicaid home care was associated with improvement in caregiver self-rated mental health, but not with any short-term change in self-rated physical health. When evaluating the social value of home care programs, policy makers should consider spillover benefits to caregivers.. For all treatment-naïve patients, TBR Topics: Activities of Daily Living; Adult; Air Pollution, Indoor; Animals; Anti-Bacterial Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Antioxidants; Azithromycin; Canada; Carbon; Caregivers; Chlorine; Cohort Studies; Corn Oil; COVID-19 Drug Treatment; Daphnia; Dust; Ecosystem; Electrodes; Environmental Monitoring; Fatty Acids; Female; Flavonoids; Fluorides; Glycosides; Greece; Groundwater; Hippocampus; Home Care Services; Humans; Infant; Inflammation; Iridoids; Lamiaceae; Longitudinal Studies; Male; Medicaid; Memory; Metals, Heavy; Methanol; Mice; Microplastics; Middle Aged; N-Methylaspartate; Neural Networks, Computer; Nitrates; Nitrogen Oxides; Nylons; Obesity; Oleic Acid; Olive Oil; Oxidation-Reduction; Phosphorus; Place Cells; Plant Components, Aerial; Plant Extracts; Plastics; Polyesters; Polyurethanes; Prevalence; Quinic Acid; Reactive Oxygen Species; Receptors, N-Methyl-D-Aspartate; Risk Assessment; Sodium Chloride; Soil; Soil Pollutants; Stachys; Staphylococcus aureus; Stearic Acids; Superoxide Dismutase; U937 Cells; United States; Water; Water Pollutants, Chemical; Young Adult | 2021 |
Loganin Alleviates Gout Inflammation by Suppressing NLRP3 Inflammasome Activation and Mitochondrial Damage.
Gout is a type of inflammatory arthritis caused by the deposition of monosodium uric acid (MSU) crystals in tissues. The etiology of gout is directly linked to the NLRP3 inflammasome, since MSU crystals are NLRP3 inflammasome activators. Therefore, we decided to search for a small-molecule inhibitor of the NLRP3 inflammasome for the prevention of gout inflammation. We found that loganin suppressed MSU crystals-induced caspase-1 (p20) and interleukin (IL)-1β production and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) specks formation in mouse primary macrophages, showing its ability to inhibit the NLRP3 inflammasome. In an air pouch inflammation model, oral administration of loganin to mice prevented MSU crystals-induced production of mature IL-1β and IL-18 in air pouch exudates, resulting in decreased neutrophil recruitment. Furthermore, oral administration of loganin suppressed MSU crystals-induced gout inflammation in a mouse foot gout model, which was accompanied by the inhibition of the NLRP3 inflammasome. Loganin blocked de novo synthesis of mitochondrial DNA in air pouches and foot tissues injected with MSU crystals. Consistently, loganin prevented MSU crystals-induced mitochondrial damage in macrophages, as it increased mitochondrial membrane potential and decreased the amount of mitochondrial reactive oxygen species. These data demonstrate that loganin suppresses NLRP3 inflammasome activation by inhibiting mitochondrial stress. These results suggest a novel pharmacological strategy to prevent gout inflammation by blocking NLRP3 inflammasome activation and mitochondrial dysfunction. Topics: Administration, Oral; Animals; Cells, Cultured; Disease Models, Animal; DNA, Mitochondrial; Gout; Inflammasomes; Inflammation; Iridoids; Macrophages; Male; Mice, Inbred C57BL; Mitochondria; NLR Family, Pyrin Domain-Containing 3 Protein; Uric Acid | 2021 |
Effect of genipin-1-β-d-gentiobioside on diabetic nephropathy in mice by activating AMP-activated protein kinase/silencing information regulator-related enzyme 1/ nuclear factor-κB pathway.
Genipin-1-β-d-gentiobioside (GG) is a kind of compound extracted from Gardenia jasminoides Ellis. The chemical structure of GG is similar to that of geniposide and has antidiabetic effects. We aimed to investigate the efficacy of GG on diabetic nephropathy (DN) in vivo and in vitro experiments and explore its potential mechanism.. For high-fat diet/streptozotocin-induced DN mice used in our study, the general features of mice were analysed after GG treatment. Oxidative stress parameters and inflammatory factors were also measured by commercial kits. Kidney damage was assessed using hematoxylin and eosin (H&E), periodic acid-Schiff (PAS) and Masson staining, respectively. In vitro, podocyte injury was assessed by TUNEL and flow cytometric analyses. AMP-activated protein kinase/silencing information regulator related enzyme 1 (AMPK/SIRT1)/nuclear factor-κB (NF-κB) pathway-related proteins were detected by AMPK-siRNA intervention and western blotting.. Treatment of GG could increase cell survival and attenuated kidney damage. Despite the presence of inflammatory and oxidative stress, when GG retained the expression of AMPK/SIRT1, it could be observed that the downstream NLRP3 inflammatory-related proteins were inhibited.. Results showed that the protective efficacy of GG on DN works together with hypoglycemia and suppressing oxidative stress and inflammation, which at least partly involved in APMK/SIRT1/NF-κB-dependent pathway. Topics: AMP-Activated Protein Kinases; Animals; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Gardenia; Inflammation; Iridoids; Kidney; Male; Mice, Inbred C57BL; NF-kappa B; NLR Family, Pyrin Domain-Containing 3 Protein; Oxidative Stress; Phytotherapy; Plant Extracts; Podocytes; Sirtuin 1 | 2021 |
Baicalin and Geniposide Inhibit Polarization and Inflammatory Injury of OGD/R-Treated Microglia by Suppressing the 5-LOX/LTB4 Pathway.
Cerebral ischemia causes severe neurological disorders and neuronal dysfunction. Baicalin (BC), geniposide (GP), and their combination (BC/GP) have been shown to inhibit post-ischemic inflammatory injury by inhibiting the 5-LOX/CysLTs pathway. The aims of this study were to observe the inhibitory effects of BC/GP on the activation of microglial cells induced by oxygen glucose deprivation and reoxygenation (OGD/R) and to investigate whether the 5-LOX/LTB4 pathway was involved in these effects. Molecular docking showed that BC and GP exhibited considerable binding activity with LTB4 synthase LTA4H. BV-2 microglia were transfected with a 5-LOX overexpression lentiviral vector, and then OGD/R was performed. The effects of different concentrations of BC, GP, and BC/GP (6.25 μM, 12.5 μM, and 25 μM) on cell viability and apoptosis of microglia were evaluated by MTT and flow cytometry. The expression of TNF-α, IL-1β, NF-κB, and pNF-κB also was measured by ELISA, Western blots and immunofluorescence. Western blots and qRT-PCR analysis were used to determine the levels of CD11b, CD206, and 5-LOX pathway proteins. Results showed that BC, GP, and BC/GP reduced the apoptosis caused by OGD/R in a dose-dependent manner, and cell viability was significantly increased at a concentration of 12.5 μM. OGD/R significantly increased the release of TNF-α, IL-1β, NF-κB, pNF-κB, and CD11b. These effects were suppressed by BC, GP, and BC/GP, and the OGD/R-induced transfer of NF-κB p65 from the ctytoplasm to the nucleus was inhibited in microglia. Interestingly, the LTB4 inhibitor, U75302, exhibited the same effect. Also, BC, GP, and BC/GP significantly reduced the expression of 5-LOX pathway proteins. These results demonstrated that BC/GP inhibited OGD/R-induced polarization in BV2 microglia by regulating the 5-LOX/LTB4 signaling pathways and attenuating the inflammatory response. Our results supported the theoretical basis for additional in-depth study of the function of BC/GP and the value of determining its unique target, which might provide a new therapeutic strategy for ischemic cerebrovascular disease. Topics: Amino Acid Sequence; Animals; Apoptosis; Arachidonate 5-Lipoxygenase; Cell Hypoxia; Cell Survival; Cells, Cultured; Epoxide Hydrolases; Flavonoids; Glucose; Humans; Inflammation; Iridoids; Mice; Microglia; Molecular Docking Simulation; Oxygen; Protein Binding; Signal Transduction | 2021 |
Loganin Inhibits Lipopolysaccharide-Induced Inflammation and Oxidative Response through the Activation of the Nrf2/HO-1 Signaling Pathway in RAW264.7 Macrophages.
Topics: Animals; Anti-Inflammatory Agents; Cell Proliferation; Cell Survival; Dinoprostone; Heme Oxygenase-1; Inflammation; Iridoids; Lipopolysaccharides; Membrane Proteins; Mice; NF-E2-Related Factor 2; Nitric Oxide; Oxidative Stress; Phagocytosis; RAW 264.7 Cells; Reactive Oxygen Species; Signal Transduction | 2021 |
Identifying the mechanism underlying antidepressant-like effects of loganin by network pharmacology in combination with experimental validation.
Loganin, an iridoid glycoside, is one of the quality control indexes of Cornus officinalis Sieb. et Zucc. Increasing evidence emphasize the important role of inflammation in the pathology of depression, which links depression with other chronic diseases. Loganin prevents inflammatory response in multiple diseases and reverses depressive-like behaviors. However, the mechanisms underlying antidepressant-like effects of loganin for the treatment of inflammation-associated depression are not utterly understood.. The present study was designed to predict the potential targets of loganin against inflammation-associated depression using a network pharmacology approach.. Pharmmapper and Uniport were used to predict loganin-related targets. Targets of inflammation were identified through GeneCards databases and Online Mendelian Inheritance in Man (OMIM). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to identify the potential mechanism. Finally, qRT-PCR and ELISA were used to confirm the role of loganin on these targets.. There were 15 nodes in the loganin-inflammation-depression intersection targets network. In the network, the degree value of CTNNB1 was above 3. Among top ten pathways identified by KEGG analysis, Th1/Th2 cell differentiation and IL-17 signaling pathways were related with both inflammation and depression. As indicated by qRT-PCR results, loganin increased CTNNB1 mRNA level. Moreover, loganin elevated M2 markers of microglia but decreased M1 markers of microglia against lipopolysaccharide (LPS), indicated by qRT-PCR results and ELISA results.. CTNNB1 was the main target of loganin. Loganin alleviated LPS-induced inflammation through inhibiting M1 polarization of microglia. Our results provide a better understanding of loganin-induced antidepressant-like effects for the treatment of inflammation-associated depression. Topics: Animals; Antidepressive Agents; beta Catenin; Cell Line; Cell Survival; Depression; Inflammation; Iridoids; Lipopolysaccharides; Mice; Microglia; Network Pharmacology; Protein Interaction Maps; Reproducibility of Results; Tumor Necrosis Factor-alpha | 2021 |
Genipin attenuates dextran sulfate sodium-induced colitis via suppressing inflammatory and oxidative responses.
Genipin is one of the major component in Gardenis fruit, which has long been used in the treatment of many chronic diseases, such as colitis. In the present study, we investigated the protective effects and mechanism of genipin on dextran sodium sulfate (DSS)-induced colitis in mice. Colitis was induced by giving 2.5% (wt/vol) DSS for 7 days. As the results show, DSS-induced body weight loss and colonic histological changes were inhibited by the treatment of genipin. DSS-induced MPO activity, MDA level, TNF-α, and IL-1β production in colonic tissues were also suppressed by genipin. To investigate the mechanism of genipin on DSS-induced colitis, the NF-κB and Nrf2 signaling pathways were detected. The results showed genipin significantly attenuated DSS-induced NF-κB activation and increased the expression of Nrf2 and HO-1 in a dose-dependent manner. The results of the present study indicated that genipin protected mice against colitis through inhibiting inflammatory and oxidative effects. Topics: Animals; Colitis; Colon; Cytokines; Dextran Sulfate; Inflammation; Inflammation Mediators; Interleukin-1beta; Iridoids; Male; Mice; Mice, Inbred C57BL; NF-E2-Related Factor 2; NF-kappa B; Oxidative Stress; Signal Transduction; Tumor Necrosis Factor-alpha | 2020 |
Loganin alleviates LPS-activated intestinal epithelial inflammation by regulating TLR4/NF-κB and JAK/STAT3 signaling pathways.
Inflammatory bowel disease (IBD) is a chronic, recurrent gastrointestinal inflammation that affects millions of people around the world. Loganin, an iridoid glycoside, has shown the anti-inflammatory effects. However, the effect of loganin on IBD and its underlying molecular mechanism are not clear. The present study aimed to investigate whether loganin could alleviate IBD and its mechanisms. The intestinal epithelial Caco-2 cell line was treated with lipopolysaccharide (LPS) to establish an in vitro IBD model. MTT assay was used to detect cell viability. The expression and release level of inflammatory factors were determined by both real-time-PCR and ELISA. Western blotting was used to assess the NF-κB and JAK/STAT3 pathway-related protein levels. The results showed that loganin repressed the expression and release of IL-6, TNF-α, and IL-1β, and inhibited TLR4/NF-κB and JAK/STAT3 signaling pathways in a concentration-dependent manner. Overexpression of TLR4 could reverse the effect of loganin, leading to activation of NF-κB signaling and production of inflammatory factors. Meanwhile, IGF-1, a JAK/STAT3 signaling activator, could also reverse the anti-inflammation effect of loganin. In conclusion, loganin inhibited LPS-activated intestinal epithelial inflammation by repressing TLR4/NF-κB and JAK/STAT3 signaling pathway. Topics: Caco-2 Cells; Cell Survival; Cytokines; Humans; Inflammation; Inflammation Mediators; Insulin-Like Growth Factor I; Intestinal Mucosa; Iridoids; Janus Kinases; Lipopolysaccharides; NF-kappa B; Signal Transduction; STAT3 Transcription Factor; Toll-Like Receptor 4 | 2020 |
The effect of oleuropein on unilateral ureteral obstruction induced-kidney injury in rats: the role of oxidative stress, inflammation and apoptosis.
Unilateral ureteral obstruction (UUO) induces kidney injury. Oleuropein as a major compound of olive leaves modulates the inflammatory parameters and decreases oxidative stress. Accordingly, we evaluate the renoprotective effect of oleuropein against 3-day UUO rats. Forty rats were randomly divided into five groups (n = 8) including control, UUO and UUO + oleuropein groups (50, 100 and 200 mg/kg). UUO model was induced by left ureter ligation and continued for 3-day. Rats were treated synchronic daily for 3-day, then mean arterial pressure (MAP), renal perfusion pressure (RPP), renal blood flow (RBF), serum creatinine level, and also superoxide dismutase (SOD), glutathione peroxidase (GPx) activity levels and malondialdehyde (MDA) concentration (in the obstructed kidney) were measured. The western blotting method was applied to evaluate the Bax, Bcl-2, cleaved caspase-3 and TNF-α proteins expression level. The hematoxylin and eosin method was applied to evaluate the kidney tissue damage score (KTDS). UUO significantly increased RVR, KTDS, and MDA, cleaved caspase-3, Bax, serum creatinine and TNF-α protein levels (P < 0.05), and also significantly decreased RBF, SOD, and GPx and Bcl-2 protein expression levels (P < 0.001) in the obstructed kidney and oleuropein (200 mg/kg) significantly ameliorated the changes induced by UUO. Our findings showed that oleuropein has a renoprotective effect against 3-day UUO. The mechanisms underlying the observed effects may be related to its antioxidative stress, anti-apoptotic, and anti-inflammatory effects. Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Caspase 3; Creatinine; Glutathione Peroxidase; Hemodynamics; Inflammation; Iridoid Glucosides; Iridoids; Kidney; Lipid Peroxidation; Male; Oxidative Stress; Rats, Wistar; Superoxide Dismutase; Tumor Necrosis Factor-alpha; Ureteral Obstruction | 2020 |
Plumericin prevents intestinal inflammation and oxidative stress in vitro and in vivo.
Inflammatory bowel diseases (IBDs) are characterized by an inflammatory and oxidative stress condition in the intestinal tissue. In this study, we evaluated the effect of plumericin, one of the main bioactive components of Himatanthus sucuuba (Woodson) bark, on intestinal inflammation and oxidative stress, both in vitro and in vivo. The effect of plumericin (0.5-2 µM) in vitro was evaluated in rat intestinal epithelial cells (IEC-6) treated with lipopolysaccharides from E. coli (10 μg/mL) plus interferon-γ (10 U/mL). Moreover, a 2,4,6-dinitrobenzene sulfonic acid (DNBS)-induced colitis model was used to evaluate the anti-inflammatory and antioxidant activity of plumericin (3 mg/kg) in vivo. The results showed that plumericin significantly reduces intestinal inflammatory factors such as tumor necrosis factor-α, cyclooxygenase-2 and inducible nitric oxide synthase expression, and nitrotyrosine formation. Plumericin also inhibited nuclear factor-κB translocation, reactive oxygen species (ROS) release, and inflammasome activation. Moreover, plumericin activated the nuclear factor erythroid-derived 2 pathway in IEC-6. Using the DNBS-induced colitis model, a significant reduction in the weight loss and in the development of the macroscopic and histologic signs of colon injury, together with a reduced inflammatory and oxidative stress state, were observed in plumericin-treated mice. These results indicate that plumericin exerts a strong anti-inflammatory and antioxidant activity. Thus, it might be a candidate for the development of a new pharmacologic approach for IBDs treatment. Topics: Animals; Anti-Inflammatory Agents; Cell Line; Colitis; Colon; Cyclooxygenase 2; Indenes; Inflammation; Inflammatory Bowel Diseases; Intestinal Mucosa; Iridoids; Male; Mice; NF-kappa B; Nitric Oxide Synthase Type II; Oxidative Stress; Rats; Reactive Oxygen Species; Tumor Necrosis Factor-alpha | 2020 |
Patriscabrin F from the roots of Patrinia scabra attenuates LPS-induced inflammation by downregulating NF-κB, AP-1, IRF3, and STAT1/3 activation in RAW 264.7 macrophages.
The roots of Partrinia scabra have been used as a medicinal herb in Asia. We previously reported that the inhibitory effect of patriscabrin F on lipopolysaccharide (LPS)-induced nitric oxide (NO) production was the most potent than that of other isolated iridoids from the roots of P. scabra.. We investigated the anti-inflammatory activity of patriscabrin F as an active compound of P. scabra and related signaling cascade in LPS-activated macrophages.. Taken together, our findings suggest patriscabrin F may exhibit anti-inflammatory properties via the inhibition of NF-κB, AP-1, IRF3, and JAK-STAT activation in LPS-induced macrophages. Topics: Animals; Cyclooxygenase 2; Down-Regulation; Inflammation; Interferon Regulatory Factor-3; Iridoids; Lipopolysaccharides; Macrophages; Mice; Mice, Inbred C57BL; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase Type II; Patrinia; Plant Roots; RAW 264.7 Cells; STAT1 Transcription Factor; STAT3 Transcription Factor; Transcription Factor AP-1 | 2020 |
Geniposide alleviates non-alcohol fatty liver disease via regulating Nrf2/AMPK/mTOR signalling pathways.
Topics: AMP-Activated Protein Kinases; Animals; Gene Expression Regulation; Hep G2 Cells; Humans; Inflammation; Iridoids; Lipids; Male; Mice; Mice, Inbred C57BL; NF-E2-Related Factor 2; Non-alcoholic Fatty Liver Disease; Oxidative Stress; Palmitic Acid; Phosphatidylinositol 3-Kinases; Phosphorylation; Polyethylene Glycols; Signal Transduction; TOR Serine-Threonine Kinases | 2020 |
Loganin alleviates testicular damage and germ cell apoptosis induced by AGEs upon diabetes mellitus by suppressing the RAGE/p38MAPK/NF-κB pathway.
Diabetes mellitus (DM) damages male reproduction at multiple levels, such as endocrine secretion, spermatogenesis and penile erection. We herein investigated the protective effects and mechanism of loganin targeting the advanced glycation end products (AGEs)/receptor for AGEs (RAGE)/p38 mitogen-activated protein kinase (p38MAPK)/NF-κB signalling pathway. Loganin relieved the general DM symptoms and decreased the blood glucose level of KK-Ay DM mice. Haematoxylin-eosin staining demonstrated that loganin ameliorated testicular histology and function and enhanced the activities of testis-specific markers lactate dehydrogenase (LDH), acid phosphatase (ACP) and gamma-glutamyl transferase (γ-GT). Loganin also showed evident anti-oxidative stress, anti-apoptotic and anti-inflammatory effects on DM-induced reproductive damage by restoring glutathione (GSH) level and superoxide dismutase (SOD) activity, as well as reducing reactive oxygen species (ROS) level and Bax/Bcl-2 ratio in vivo and in vitro. Western blotting exhibited that loganin significantly inhibited the AGEs/RAGE/p38MAPK/NF-κB signalling pathway. Acridine orange and ethidium bromide staining (AOEB) and Western blotting showed that loganin in combination with inhibitors of RAGE, p38MAPK and NF-κB exerted stronger anti-apoptotic effects on AGE-induced GC-2 cell damage compared with loganin alone. In conclusion, loganin can protect against DM-induced reproductive damage, probably by suppressing the AGEs/RAGE/p38MAPK/NF-κB pathway. Topics: Animals; Apoptosis; Cell Line; Diabetes Mellitus, Experimental; Down-Regulation; Glycation End Products, Advanced; Inflammation; Iridoids; Kidney; Male; Mice; NF-kappa B; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Protective Agents; Receptor for Advanced Glycation End Products; Signal Transduction; Spermatozoa; Testis | 2020 |
miR‑21/PTEN pathway mediates the cardioprotection of geniposide against oxidized low‑density lipoprotein‑induced endothelial injury via suppressing oxidative stress and inflammatory response.
Oxidized low‑density lipoprotein (ox‑LDL)‑induced vascular endothelial damage, oxidative stress and inflammation play a vital role in the pathophysiology of atherosclerosis. Geniposide is the primary active ingredient from Gardenia jasminoides Ellis associated with anti‑oxidative properties and cardioprotective action. However, the therapeutic mechanism of geniposide in atherosclerosis remains unclear. Hence, the present study aimed to elucidate the underlying mechanisms of geniposide in oxidative stress and inflammatory response during ox‑LDL injury in human umbilical vein endothelial cells (HUVECs), focusing particularly on the microRNA (miR)‑21/PTEN pathway. The results demonstrated that geniposide pretreatment significantly increased cell viability, decreased lactate dehydrogenase release, increased miR‑21 level and decreased PTEN expression under ox‑LDL condition. Subsequently, transfection with miR‑21 mimic enhanced the protection of geniposide on ox‑LDL‑induced cytotoxicity and apoptosis (mediated by the upregulation of apoptotic rate and caspase‑3 activity), whereas miR‑21 inhibitor reversed these effects of geniposide. In addition, geniposide resulted in an anti‑oxidant effect as evidenced by the decrease in reactive oxygen species generation, malondialdehyde content and NADPH oxidase 2 expression, and the increase in superoxide dismutase, glutathione peroxidase and catalase activities in ox‑LDL‑treated HUVECs, which were exacerbated by miR‑21 mimic and reversed by miR‑21 inhibitor. Furthermore, geniposide mitigated the ox‑LDL‑induced inflammatory response, demonstrated by a downregulation of pro‑inflammatory cytokine (IL‑1β, IL‑6, and TNF‑α) levels and an upregulation of anti‑inflammatory cytokine (IL‑10) level. However, miR‑21 mimic enhanced, whereas miR‑21 inhibitor attenuated, these effects of geniposide. In conclusion, the present results indicated that geniposide protects HUVECs from ox‑LDL injury by inhibiting oxidative stress and inflammation, and that these effects are partly due to the enhancement of the miR‑21/PTEN pathway. Topics: Antioxidants; Apoptosis; Cardiotonic Agents; Cell Survival; Cells, Cultured; Cytokines; Down-Regulation; Human Umbilical Vein Endothelial Cells; Humans; Inflammation; Iridoids; Lipoproteins, LDL; MicroRNAs; Oxidative Stress; PTEN Phosphohydrolase; Reactive Oxygen Species; Signal Transduction; Up-Regulation | 2020 |
Effect of oleuropein on oxidative stress, inflammation and apoptosis induced by ischemia-reperfusion injury in rat kidney.
This study aimed to evaluate the effect of oleuropein (OLE), the main phenolic compound present in olive leaves, on kidney ischemia-reperfusion injury (IRI) and to explore the underlying protective mechanism.. Rat kidneys were subjected to 60 min of bilateral warm ischemia followed by 120 min of reperfusion. OLE was administered orally 48 h, 24 h and 30 min prior to ischemia at doses of 10, 50 and 100 mg/kg body weight. The creatinine, urea, uric acid concentrations and lactate dehydrogenase (LDH) activity in plasma were evaluated. Oxidative stress and inflammation parameters were also assessed. Renal expression of AMP-activated protein kinase (p-AMPK), endothelial nitric oxide synthase (eNOS), mitogen-activated protein kinases (MAPK), inflammatory proteins and apoptotic proteins were evaluated using Western blot.. Our results showed that OLE at 50 mg/kg reduced kidney IRI as revealed by a significant decrease of plasmatic creatinine, urea, uric acid concentrations and LDH activity. In parallel, OLE up-regulated antioxidant capacities. Moreover, OLE diminished the level of CRP and the expression of cyclooxygenase 2 (COX-2). Finally, OLE enhanced AMPK phosphorylation as well as eNOS expression whereas MAPK, and cleaved caspase-3 implicated in cellular apoptosis were attenuated in the ischemic kidneys.. In conclusion, this study shows that OLE could be used as therapeutic agent to reduce IRI through its anti-oxidative, anti-inflammatory and anti-apoptotic properties. Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Apoptosis; Dose-Response Relationship, Drug; Inflammation; Iridoid Glucosides; Iridoids; Kidney; Male; Oxidative Stress; Rats; Rats, Wistar; Reperfusion Injury; Time Factors | 2020 |
Oral delivery of oleuropein-loaded lipid nanocarriers alleviates inflammation and oxidative stress in acute colitis.
Inflammation and oxidative stress pathways have emerged as novel targets in the management of inflammatory bowel diseases (IBD). Targeting the drug to the inflamed colon remains a challenge. Nanostructured lipid carriers (NLCs) have been reported to accumulate in inflamed colonic mucosa. The antioxidant/antiinflamatory polyphenol oleuropein (OLE) was loaded in NLCs (NLC-OLE). NLC-OLE showed to be more effective in decreasing the TNF-α secretion and intracellular reactive oxygen species (ROS) by activated macrophages (J774) compared to the conventional form of OLE. OLE efficacy was preserved within NLC-OLE ameliorating inflammation in a murine model of acute colitis: reduced levels of TNF-α and IL-6, decreased neutrophil infiltration and improved histopathology of the colon were reported. In addition, NLC-OLE enhanced the ROS scavenging activity of OLE in the colon after oral administration. These data suggest that the proposed NLC-OLE could be a promising drug delivery system for OLE in IBD treatment. Topics: Administration, Oral; Animals; Anti-Inflammatory Agents; Antioxidants; Cell Line; Colitis; Disease Models, Animal; Drug Carriers; Drug Delivery Systems; Inflammation; Iridoid Glucosides; Iridoids; Lipids; Macrophages; Male; Mice; Mice, Inbred C57BL; Nanostructures; Oxidative Stress; Reactive Oxygen Species | 2020 |
Genipin inhibits rotavirus-induced diarrhea by suppressing viral replication and regulating inflammatory responses.
Rotavirus is the leading cause of acute gastroenteritis among young children worldwide. However, agents specifically designed to treat rotavirus infection have not been developed yet. In this study, the anti-rotavirus and anti-inflammatory effects of genipin, a chemical compound found in the fruit of Gardenia jasminoides, were evaluated. Genipin had an antiviral effect against the human rotavirus Wa and SA-11 strains in vitro, and it inhibited two distinct stages of the viral replication cycle: attachment and penetration (early stage) in pre-treatment and assembly and release (late stage) in post-treatment. Additionally, genipin downregulated nitric oxide synthase and pro-inflammatory cytokines in lipopolysaccharide-stimulated RAW264.7 cells and rotavirus-infected Caco-2 cells. Oral administration of genipin before and after viral infection with the murine rotavirus epidemic diarrhea of infant mice strain led to a reduced duration of diarrhea and faecal viral shedding and to decreased destruction of the enteric epithelium. Genipin could have potential as a natural compound with preventive and therapeutic effects against infection and colitis caused by rotavirus. Topics: Animals; Animals, Newborn; Anti-Inflammatory Agents; Antiviral Agents; Caco-2 Cells; Cytokines; Diarrhea; Disease Models, Animal; Humans; Inflammation; Iridoids; Mice; Nitric Oxide Synthase; RAW 264.7 Cells; Rotavirus; Rotavirus Infections; Virus Replication; Virus Shedding | 2020 |
Natural iridoids from Patrinia heterophylla showing anti-inflammatory activities in vitro and in vivo.
Inflammation, especially chronic inflammation, has been found to be closely related to the pathology of many diseases and the discovery of bioactive natural products to inhibit NO production is one of strategies to treat inflammation. In our continuous search for bioactive natural substances as potential anti-inflammatory agents, five new compounds (1-5) were extracted and purified from Patrinia heterophylla. The NMR and MS data analysis, along with electronic circular dichroism (ECD) calculations, led to the identification of these isolates, which were new iridoids. Using cell and zebrafish models, the in vitro and in vivo anti-inflammatory effects were conducted to evaluate the potency of anti-inflammation of these compounds. The preliminary mechanism was explored using molecular docking and Western blotting experiments. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Biological Products; Cell Survival; Dose-Response Relationship, Drug; Inflammation; Iridoids; Mice; Molecular Docking Simulation; Molecular Structure; Nitric Oxide; Patrinia; Reactive Oxygen Species; Structure-Activity Relationship; Zebrafish | 2020 |
Monotropein alleviates H2O2‑induced inflammation, oxidative stress and apoptosis via NF‑κB/AP‑1 signaling.
Aging is a major risk factor in cardiovascular disease (CVD). Oxidative stress and inflammation are involved in the pathogenesis of CVD, and are closely associated with senescent vascular endothelial cells. Monotropein (Mtp) exerts various bioactive roles, including anti‑inflammatory and antioxidative effects. The aim of the present study was to investigate the function of Mtp in senescent endothelial cells. An MTT assay was performed to evaluate the influence of Mtp on H2O2‑stimulated human umbilical vein endothelial cells (HUVECs). Senescent cells were assessed by determining the expression of senescence‑associated β‑galactosidase, high mobility group AT‑hook 1 and DNA damage marker γ‑H2A.X variant histone. Malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH‑Px) and proinflammatory cytokine concentrations were estimated using assay kits to evaluate the levels of oxidative stress and inflammation in HUVECs. The TUNEL assay was performed to identify apoptotic cells. Furthermore, the expression levels of endothelial cell adhesion factors, NF‑κB, activator protein‑1 (AP‑1) and apoptotic proteins were determined via western blotting. Mtp enhanced HUVEC viability following H2O2 stimulation. H2O2‑mediated increases in MDA, proinflammatory cytokine and endothelial cell adhesion factor levels were decreased by Mtp treatment, whereas Mtp reversed H2O2‑mediated downregulation of SOD and GSH‑Px activity. Furthermore, Mtp inhibited cell apoptosis, NF‑κB activation and AP‑1 expression in H2O2‑stimulated HUVECs; however, NF‑κB activator counteracted the anti‑inflammatory, antioxidative and antiapoptotic effects of Mtp. The present study indicated that Mtp ameliorated H2O2‑induced inflammation and oxidative stress potentially by regulating NF‑κB/AP‑1. Topics: Antioxidants; Apoptosis; Cardiovascular Diseases; Cell Survival; Glutathione Peroxidase; Human Umbilical Vein Endothelial Cells; Humans; Hydrogen Peroxide; Inflammation; Iridoids; Malondialdehyde; NF-kappa B; Oxidative Stress; Reactive Oxygen Species; Signal Transduction; Superoxide Dismutase; Transcription Factor AP-1 | 2020 |
Geniposide ameliorated sepsis-induced acute kidney injury by activating PPARγ.
Acute kidney injury is one of the most common complications that occurs in septic shock. An effective therapeutic intervention is urgently needed. Geniposide has been reported to possess pleiotropic activities against different diseases. However, the effect of geniposide on sepsis-induced kidney injury is unexplored. Our study aims to illustrate the mitigative effects of geniposide on sepsis-induced kidney injury and its relevant mechanisms. Sepsis was induced in mice undergoing cecal ligation and puncture (CLP) surgery. Mice were intraperitoneally injected with geniposide (10, 20 and 40 mg/kg) for treatment. The results showed that geniposide ameliorated kidney injury and dysfunction in CLP-induced septic mice, accompanied by reduction of inflammatory response and oxidative stress. We also found that geniposide significantly reduced vascular permeability and cellular apoptosis of the kidney, with increase of Bcl-2 and decrease of Bax and cleaved caspase-3. Moreover, PPARγ was found to be upregulated with the increasing concentration of geniposide. The protection of geniposide against inflammation and apoptosis was recovered by inhibition of PPARγ. Collectively, these results indicate that geniposide could significantly ameliorate acute kidney injury in CLP-induced septic mice and LPS-stimulated HK-2 cells by activating PPARγ. Geniposide might be a potential drug candidate for sepsis-induced kidney injury. Topics: Acute Kidney Injury; Animals; Apoptosis; Cells, Cultured; Inflammation; Iridoids; Kidney; Male; Mice, Inbred BALB C; Oxidative Stress; PPAR gamma; Sepsis | 2020 |
Using Network Pharmacology for Systematic Understanding of Geniposide in Ameliorating Inflammatory Responses in Colitis Through Suppression of NLRP3 Inflammasome in Macrophage by AMPK/Sirt1 Dependent Signaling.
Ulcerative colitis is a chronic and recurrent inflammatory bowel disease mediated by immune response. Geniposide is the main active ingredient extracted from Gardenia jasminoides, which has been suggested to exert excellent efficacy on inflammatory disease. Herein, in this study, we aimed to uncover the systematic understanding of the mechanism and effects of geniposide in ameliorating inflammatory responses in colitis. In brief, the TCMSP server and GEO DataSets were used to analyze the systematic understanding of the mechanism and effects of geniposide in ameliorating inflammatory responses in colitis. Dextran Sulfate Sodium (DSS)-induced acute colitis of mice were administered with 25-100[Formula: see text]mg/kg of geniposide for 7 days by gavage. Lipopolysaccharide (LPS)-induced Bone Marrow Derived Macrophage (BMDM) cell or RAW264.7 cell models were treated with 20, 50 and 100[Formula: see text][Formula: see text]M of geniposide for 4[Formula: see text]h. Myeloperoxidase (MPO) activity and Interleukin-1[Formula: see text] (IL-1[Formula: see text] levels were measured using MPO activity kits and IL-1[Formula: see text] levels enzyme-linked immunosorbent assay (ELISA) kits, respectively. Additionally, Western blot was used to determine the relevant protein expression. As a result, Geniposide could ameliorate inflammatory responses and prevent colitis in DSS-induced acute colitis of mice by activating AMP-activated protein kinase (AMPK)/Transcription 1 (Sirt1) dependent signaling via the suppression of nod-like receptor protein 3 (NLRP3) inflammasome. Geniposide attenuated macrophage differentiation in DSS-induced acute colitis of mice. Geniposide suppressed NLRP3 inflammasome and induced AMPK/Sirt1 signaling in LPS-induced BMDM cell or RAW264.7 cell models. In mechanism studies, the inhibition of AMPK/Sirt1 attenuated the anti-inflammatory effects of geniposide in colitis. The activation of NLRP3 attenuated the anti-inflammatory effects of geniposide in colitis. Taken together, our results demonstrated that geniposide ameliorated inflammatory responses in colitis vai the suppression of NLRP3 inflammasome in macrophages by AMPK/Sirt1-dependent signaling. Topics: AMP-Activated Protein Kinases; Animals; Cells, Cultured; Colitis; Disease Models, Animal; Inflammasomes; Inflammation; Iridoids; Macrophages; Mice; Mice, Inbred C57BL; NLR Family, Pyrin Domain-Containing 3 Protein; Phytotherapy; RAW 264.7 Cells; Signal Transduction; Sirtuin 1 | 2020 |
Cornelian Cherry Iridoid-Polyphenolic Extract Improves Mucosal Epithelial Barrier Integrity in Rat Experimental Colitis and Exerts Antimicrobial and Antiadhesive Activities
Inflammatory bowel disease pharmacotherapy, despite substantial progress, is still not satisfactory for both patients and clinicians. In view of the chronic and relapsing disease course and not always effective treatment with adverse effects, attempts to search for new, more efficient, and safer substances are essential and reasonable. This study was designed to elucidate the impact of cornelian cherry iridoid-polyphenolic extract (CE) and loganic acid (LA) on adherent-invasive. Antibacterial and antiadhesive activities of CE and LA were assessed using microdilution, Int407 cell adherence, and yeast agglutination assays. The colitis model was induced by 2,4,6-trinitrobenzenesulfonic acid. Studied substances were administered intragastrically for 16 days prior to colitis induction. Body weight loss; colon index; histological injuries; IL-23, IL-17, TNF-. Only CE exerted antimicrobial and antiadhesive activities. CE exerted a protective effect against experimental colitis via impaired mucosal epithelial barrier restoration and intestinal inflammatory response attenuation and given concomitantly with sulfasalazine counteracted colitis in a more effective way than sulfasalazine alone, which indicates their synergistic interaction. The beneficial effect of CE may also be due to its bacteriostatic and antiadhesive activities. Topics: Animals; Anti-Bacterial Agents; Colitis; Colon; Escherichia coli; Humans; Inflammation; Intestinal Mucosa; Iridoids; Male; Rats, Wistar; Trinitrobenzenesulfonic Acid | 2020 |
Genipin, a natural AKT inhibitor, targets the PH domain to affect downstream signaling and alleviates inflammation.
The iridoid compound genipin (GNP) is a geniposide hydrolysate of β-glucosidase. GNP has many pharmacological effects, including antioxidant, anti-apoptotic, and anti-inflammation effects. However, its exact target and mechanism of action remain poorly understood. In this study, the binding of GNP to AKT protein was demonstrated via a GNP-modified magnetic microspheres (GNP-MMs) capture and immunofluorescence co-localization test. GNP-MMs fishing coupled with competitive testing and AKT plasma transport experiments indicate that GNP may act on the PH domain of AKT, and affect AKT plasma transport. The specific binding directly inhibits phosphorylation of AKT, affecting the downstream activation, and reducing inflammatory responses. The results indicate that GNP targets the PH domain region of AKT, inhibits the phosphorylation of AKT, and attenuates the transduction of AKT based inflammation signal pathway. Topics: Cholagogues and Choleretics; Dose-Response Relationship, Drug; Drug Delivery Systems; HEK293 Cells; Humans; Inflammation; Inflammation Mediators; Iridoids; Protein Structure, Secondary; Protein Structure, Tertiary; Proto-Oncogene Proteins c-akt; Signal Transduction | 2019 |
Screening of the Hepatotoxic Components in
Topics: Animals; Apoptosis; Cell Cycle; Cell Line; Cell Survival; Chromatography, High Pressure Liquid; Gardenia; Inflammation; Iridoids; Liver; Molecular Docking Simulation; Oxidative Stress; Phytochemicals; Plant Extracts; Rats; Receptors, Tumor Necrosis Factor, Type I; Reference Standards | 2019 |
Genipin Ameliorates Carbon Tetrachloride-Induced Liver Injury in Mice via the Concomitant Inhibition of Inflammation and Induction of Autophagy.
Genipin, as the most effective ingredient of various traditional medications, encompasses antioxidative, anti-inflammatory, and antibacterial capacities. More recently, it is suggested that genipin protects against septic liver damage by restoring autophagy. The purpose of the current study was to explore the protective effect of genipin against carbon tetrachloride- (CCl Topics: Animals; Autophagy; Carbon Tetrachloride; Chemical and Drug Induced Liver Injury; Disease Models, Animal; Inflammation; Iridoids; Liver; Male; Medicine, Traditional; Mice; Rubiaceae | 2019 |
Evaluation of the effect of oleuropein on alveolar bone loss, inflammation, and apoptosis in experimental periodontitis.
The present study aimed to evaluate the effects of oleuropein on ligature-induced alveolar bone loss. In this respect, osteoblastic activity, osteoclastic activity, inflammatory markers, and apoptosis were evaluated.. Oleuropein is a flavonoid, which has potent anti-inflammatory and bone-protective effects.. Thirty-two Wistar rats were divided into four experimental groups as following: control (C, n = 8) group; periodontitis (P, n = 8) group; periodontitis and low-dose oleuropein group (12 mg/kg/day oleuropein, LDO group, n = 8); and periodontitis and high-dose oleuropein group (24 mg/kg/day oleuropein, HDO group, n = 8). Periodontitis was induced via ligatures. Study period was 14 days, and animals were sacrificed at end of this period. Mandibles were examined via a stereomicroscope and underwent histological procedures. Osteoblast, tartrate-resistant acid phosphatase (TRAP)-positive osteoclast, and inflammatory cell counts were determined in hematoxylin-eosin stained sections. Inducible nitric oxide synthase (iNOS), bone morphogenetic protein-4, the cluster of differentiation (CD)-68, cysteine-aspartic proteases-3 (Caspase 3), and B-cell lymphoma-2 (Bcl-2) expressions were evaluated via immunohistochemistry.. Periodontitis group had highest alveolar bone loss, and these levels significantly decreased in LDO and HDO groups. Both 12 and 24 mg/kg oleuropein groups significantly increased osteoblast cell counts and decreased TRAP-positive osteoclast and inflammatory cell counts. BMP-4 and bcl-2 expressions were elevated in oleuropein groups while caspase-3 expressions decreased. iNOS and CD68 were higher in periodontitis group compared to control group, but there was no significant difference between other groups.. Oleuropein successfully decreased alveolar bone loss as a result of decreased osteoclastic activity, inflammation, and apoptosis and increased osteoblastic activity. Topics: Alveolar Bone Loss; Animals; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Apoptosis; Bone Morphogenetic Protein 4; Caspase 3; Female; Inflammation; Iridoid Glucosides; Iridoids; Nitric Oxide Synthase Type II; Osteoblasts; Osteoclasts; Periodontitis; Proto-Oncogene Proteins c-bcl-2; Rats; Rats, Wistar; Tartrate-Resistant Acid Phosphatase | 2019 |
Loganin Attenuates Osteoarthritis in Rats by Inhibiting IL-1β-Induced Catabolism and Apoptosis in Chondrocytes Via Regulation of Phosphatidylinositol 3-Kinases (PI3K)/Akt.
BACKGROUND Chondrocyte apoptosis and catabolism are 2 major factors that contribute to the progression of osteoarthritis (OA). Loganin, an iridoid glycoside present in several herbs, including Flos lonicerae, Cornus mas L, and Strychnos nux vomica, is a valuable medication with anti-inflammatory and anti-apoptotic effects. Our study examines these effects and explores the potential benefits of loganin in the OA treatment. MATERIAL AND METHODS To clarify the roles of loganin in OA and its specific signaling pathway, chondrocytes were administrated with IL-1ß and supplemented with or without LY294002 (a classic PI3K/Akt inhibitor). The apoptotic level, catabolic factors (MMP-3 and MMP-13 and ADAMTS-4 and ADAMTS-5), extracellular matrix (ECM) degradation, and activation of the PI3K/Akt pathway were evaluated using western blotting, PCR, and an immunofluorescent assay. The degenerative condition of the cartilage was evaluated using the Safranin O assay in vivo. The expression of cleaved-caspase-3 (C-caspase-3) was measured using immunochemistry. RESULTS The data suggested that loganin suppressed the apoptotic level, reduced the release of catabolic enzymes, and decreased the ECM degradation of IL-1ß-induced chondrocytes. However, suppressing PI3K/Akt signaling using LY294002 alleviated the therapeutic effects of loganin in chondrocytes. Our in vivo experiment showed that loganin partially attenuated cartilage degradation while inhibiting the apoptotic level. CONCLUSIONS This work revealed that loganin treatment attenuated IL-1ß-treated apoptosis and ECM catabolism in rat chondrocytes via regulation of the PI3K/Akt signaling, revealing that loganin is a potentially useful treatment for OA. Topics: Animals; Apoptosis; China; Chondrocytes; Inflammation; Interleukin-1beta; Iridoids; Male; Osteoarthritis; Phosphatidylinositol 3-Kinases; Primary Cell Culture; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Signal Transduction | 2019 |
Oleuropein suppresses oxidative, inflammatory, and apoptotic responses following glycerol-induced acute kidney injury in rats.
Here, we evaluated the possible protective effects of oleuropein, the major phenolic constituent in virgin olive oil against glycerol-induced acute kidney injury (AKI) in rats.. Twenty-eight Sprague Dawley rats were allocated equally into four groups as follows: control group, oleuropein group (50 mg/kg body weight), AKI group and the oleuropein + AKI group. AKI was induced by injecting 50% glycerol (10 ml/kg body weight) intramuscularly.. Glycerol injection increased the kidney relative weight as well as rhabdomyolysis (RM)- and AKI-related index levels, including the levels of creatine kinase, lactate dehydrogenase, creatinine, urea, and Kim-1 expression. Additionally, alteration in oxidative conditions in renal tissue was recorded, as confirmed by the elevated malondialdehyde and nitric oxide levels and the decreased glutathione content. Concomitantly, the protein and mRNA expression levels of antioxidant enzymes were suppressed. Moreover, Nfe2l2 and Hmox1 mRNA expression was also downregulated. Glycerol triggered inflammatory reactions in renal tissue, as evidenced by the increased pro-inflammatory cytokines and Ccl2 protein and mRNA expression, whereas myeloperoxidase activity was increased. Furthermore, glycerol injection enhanced apoptotic events in renal tissue by increasing the expression of the pro-apoptotic proteins and decreasing that of anti-apoptotic. However, oleuropein administration reversed the molecular, biochemical, and histological alterations resulting from glycerol injection.. Our data suggest that oleuropein has potential as an alternative therapy to prevent or minimize RM incidence and subsequent development of AKI, possibly due to its potent anti-stress, anti-inflammatory, and anti-apoptotic effects. Topics: Acute Kidney Injury; Animals; Antioxidants; Apoptosis; Cell Adhesion Molecules; Creatine Kinase; Creatinine; Glutathione; Glycerol; Inflammation; Iridoid Glucosides; Iridoids; Kidney; Male; Malondialdehyde; Nitric Oxide; Oxidation-Reduction; Oxidative Stress; Peroxidase; Rats; Rats, Sprague-Dawley; Rhabdomyolysis | 2019 |
Geniposide protects PC12 cells from lipopolysaccharide-evoked inflammatory injury via up-regulation of miR-145-5p.
Geniposide is an active ingredient with anti-apoptotic and anti-inflammatory properties. This study was to examine the effects of geniposide on a cell model of spinal cord injury (SCI). PC12 cells were administrated with geniposide before subjected to LPS. The effects of geniposide were analyzed by utilizing CCK-8 assay, apoptosis assay, ELISA, RT-qPCR and Western blot. We found that PC12 cells viability was unchanged by treating with geniposide. However, geniposide with concentrations of 200 or 300 μg/mL significantly mitigated LPS-evoked viability loss. Meanwhile, apoptosis driven by LPS was mitigated by geniposide, which accompanied with p53, Bax and cleaved caspase-3 down-regulation, and Bcl-2 up-regulation. Besides this, the expression and release of IL-1β, IL-6, IL-8 and TNF-α evoked by LPS were mitigated by geniposide. miR-145-5p was a target of geniposide. miR-145-5p expression was up-regulated by geniposide, and geniposide did not protect PC12 cells against LPS injury when miR-145-5p was silenced. Moreover, geniposide inhibited NF-κB and JNK pathways via up-regulating miR-145-5p. In short, the present work described the neuroprotective effects of geniposide by targeting miR-145-5p. Further mechanisms involved in geniposide's beneficial effects are correlated with the inhibited NF-κB and JNK pathways. Highlights Geniposide prevents LPS-induced injury in PC12 cells; Geniposide up-regulates miR-145-5p; Geniposide protects PC12 cells via up-regulation of miR-145-5p; Geniposide inhibits NF-κB and JNK pathways via up-regulation of miR-145-5p. Topics: Animals; Cytokines; Cytoprotection; Inflammation; Iridoids; JNK Mitogen-Activated Protein Kinases; Lipopolysaccharides; MicroRNAs; NF-kappa B; PC12 Cells; Rats; Signal Transduction; Up-Regulation | 2019 |
Controllable release of interleukin-4 in double-layer sol-gel coatings on TiO
Topics: Absorbable Implants; Animals; Biocompatible Materials; Cell Survival; Chitosan; Cross-Linking Reagents; Drug Delivery Systems; Hydrogels; Inflammation; Interleukin-4; Iridoids; Macrophages; Metal Nanoparticles; Mice; Osteoblasts; Phase Transition; Phenotype; Rats; Rats, Sprague-Dawley; RAW 264.7 Cells; Surface Properties; Titanium; Wound Healing | 2018 |
Geniposide Suppresses Interleukin-1β-Induced Inflammation and Apoptosis in Rat Chondrocytes via the PI3K/Akt/NF-κB Signaling Pathway.
Osteoarthritis (OA) is a chronic degenerative joint disease that is principally characterized by progressive joint dysfunction and cartilage degradation. Inflammation and apoptosis play critical roles in the progression of OA. Geniposide (GPO), one of the principal components of the fruit of Gardenia jasminoides Ellis, has been reported to have anti-inflammatory and other pharmacological effects. In this study, we performed in vitro experiments on rat chondrocytes to examine the therapeutic effects of GPO on OA and investigated its effects in vivo in a rat model of OA induced by medial meniscal tear (MMT). The results suggest that GPO can inhibit the expression of INOS, COX-2, and MMP-13 in vitro, and promote the expression of collagen II in rat chondrocytes stimulated with interleukin-1β (IL-1β). In addition, we also found that GPO can inhibit the expression of pro-apoptotic proteins such as Bax, Cyto-c, and C-caspase3 and increase the expression of the anti-apoptotic protein Bcl-2. These changes may be related to GPO-induced inhibition of the IL-1β-induced activation of the PI3K/Akt/NF-κB signaling pathway. In vivo, we also found that GPO can limit the development of OA in a rat model. Taken together, the above results indicate that GPO has potential therapeutic value for treating OA. Topics: Animals; Apoptosis; Chondrocytes; Inflammation; Interleukin-1beta; Iridoids; NF-kappa B; Osteoarthritis; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Rats; Signal Transduction | 2018 |
Preparation and evaluation of decellularized porcine carotid arteries cross-linked by genipin: the preliminary results.
Decellularized arteries have been considered as promising scaffolds for small-diameter vascular substitutes. However, weakened mechanical properties, immunological rejection and rapid degradation after transplantation still exist after decellularization. Previous studies indicated that genipin cross-linking can solve these problems. Therefore, genipin was selected as the cross-linking agent for the pre-treatment of decellularized arteries in our study. Histological analysis, scanning electron microscopy, mechanical properties analysis and subcutaneous embedding experiment were adopted to investigate the efficiency of decellularization and the effect of genipin cross-linking on improving mechanical, structural and biological properties of decellularized arteries. Decellularization protocols based on three trypsin concentrations were used to prepare decellularized arteries, after decellularization, arteries were cross-linked with genipin. Results showed that 0.5% trypsin was the most efficient concentration to remove cellular components and preserve ECM. However, mechanical properties of 0.5% trypsin decellularized arteries weakened significantly, while genipin cross-linking improved mechanical properties of decellularized arteries to the same level as fresh arteries. After 4 weeks subcutaneous embedding, cross-linked arteries caused the mildest inflammatory response. In conclusion, genipin could be employed as an ideal cross-linking agent to strengthen mechanical properties, enhance the resistance to degradation and reduce the antigenicity of decellularized arteries for small-diameter blood vessel tissue engineering applications. Topics: Animals; Biomechanical Phenomena; Carotid Arteries; Cross-Linking Reagents; Dogs; Extracellular Matrix; Inflammation; Iridoids; Swine; Tissue Engineering; Tissue Scaffolds | 2018 |
Geniposide Attenuates LPS-Induced Injury via Up-Regulation of miR-145 in H9c2 Cells.
Myocarditis is a cardiomyopathy associated with inflammatory response. It has been reported that geniposide (GEN), a traditional Chinese herb extract from Gardenia jasminoides Ellis, possesses an anti-inflammatory effect and a protective effect on cardiomyocytes. The present study aimed to explore the protective role of GEN and the underlying mechanism in LPS-injured H9c2 cells. H9c2 cells were treated with LPS to induce cell injury and then we investigated the effect of GEN. miR-145 expression was inhibited by transfection with miR-145 inhibitor and its expression was measured by RT-PCR. Cell viability and apoptotic cells were measured by CCK-8 assay and flow cytometry analysis. The levels of pro-inflammatory factors (IL-6, TNF-α, and MCP-1) were assessed by western blot and RT-PCR. Western blot was performed to detect the expression of the MEK/ERK pathway-related factors. LPS exposure reduced cell viability, increased apoptotic cells, and promoted the expression of pro-inflammatory factors in H9c2 cells. However, GEN pretreatment significantly reduced LPS-induced cell injury, as increased cell viability, reduced apoptotic cells, and inhibited the expression of pro-inflammatory factors. Moreover, we found that miR-145 expression was down-regulated by LPS exposure but was up-regulated by GEN pretreatment. The protective effect of GEN on LPS-injured H9c2 cells was blocked by miR-145 inhibitor. In addition, GEN inhibited the MEK/ERK pathway through up-regulating miR-145. Our results suggested that GEN exerted a protective role in LPS-injured H9c2 cells. The GEN-associated regulation might be related to its regulation on miR-145 and the MEK/ERK signaling pathway. Topics: Animals; Cell Line; Cell Survival; Inflammation; Iridoids; Lipopolysaccharides; MAP Kinase Signaling System; MicroRNAs; Myocytes, Cardiac; Rats; Up-Regulation | 2018 |
Anti-Inflammatory Effect of Geniposide on Osteoarthritis by Suppressing the Activation of p38 MAPK Signaling Pathway.
It has been suggested that the activation of the p38 mitogen activated protein kinases (MAPKs) signaling pathway plays a significant role in the progression of OA by leading to the overexpression of proinflammatory cytokines, chemokines, and signaling enzymes in human osteoarthritis chondrocytes. However, most p38 MAPK inhibitors applied for OA have been thought to be limited due to their potential long-term toxicities. Geniposide (GE), an iridoid glycoside purified from the fruit of the herb, has been widely used in traditional medicine for the treatment of a variety of chronic inflammatory diseases. In this study, we evaluated the inhibition effect of geniposide on the inflammatory progression of the surgically induced osteoarthritis and whether the protective effect of geniposide on OA is related to the inhibition of the p38 MAPK signaling pathway. Topics: Animals; Anti-Inflammatory Agents; Chondrocytes; Inflammation; Interleukin-1beta; Iridoids; Matrix Metalloproteinases; Nitric Oxide; Osteoarthritis; p38 Mitogen-Activated Protein Kinases; Rabbits; Signal Transduction; Synovial Fluid; Tumor Necrosis Factor-alpha | 2018 |
Monotropein attenuates ovariectomy and LPS-induced bone loss in mice and decreases inflammatory impairment on osteoblast through blocking activation of NF-κB pathway.
Estrogen deficiency and inflammation are known to play important roles in bone metabolism and occurrence of osteoporosis. Monotropein as an iridoid glycoside is reported to decrease estrogen deficiency-induced bone loss and inhibit inflammatory response in LPS-induced RAW 264.7 macrophages. However, the effect of monotropein on bone loss in chronic inflammatory conditions remains unclear. It was found in the present study that monotropein significantly inhibited bone mass reduction and improved bone micro-architectures by enhancing bone formation and blocking increased secretion of inflammatory cytokines in osteoporotic mice induced by combined ovariectomy and LPS. Our in vitro experiment further demonstrated that monotropein was able to increase the proliferation and activity of alkaline phosphatase (ALP), bone matrix mineralization and the expression of bone matrix protein osteopontin (OPN) in osteoblastic MC3T3-E1 cells injured by LPS. In addition, monotropein significantly decreased the production of IL-6 and IL-1β, inhibited the nuclear translocation of p65 and NF-κB P50, and down-regulated the phosphorylation of NF-κB p65 and IKK, indicating that monotropein could attenuate inflammatory impairment to MC3T3-E1 cells by suppressing the activation of NF-κB pathway. All these results suggest that monotropein may prove to be a promising candidate for the prevention and treatment of inflammatory bone loss. Topics: Alkaline Phosphatase; Animals; Bone Density; Bone Matrix; Bone Resorption; Calcification, Physiologic; Cell Cycle; Cell Line; Cell Proliferation; Female; Femur; Inflammation; Interleukin-1beta; Interleukin-6; Iridoids; Lipopolysaccharides; Mice, Inbred C57BL; NF-kappa B; Osteoblasts; Osteocalcin; Osteoporosis; Ovariectomy; Signal Transduction; X-Ray Microtomography | 2018 |
Loganin prevents BV-2 microglia cells from Aβ
Topics: Amyloid beta-Peptides; Animals; Dinoprostone; Inflammation; Iridoids; Mice; Microglia; NF-kappa B; Nitric Oxide; Peptide Fragments; Signal Transduction; TNF Receptor-Associated Factor 6; Toll-Like Receptor 4 | 2018 |
Bioactive Constituents of
The traditional role of Topics: Cytokines; Enzyme-Linked Immunosorbent Assay; Flavonoids; Humans; Inflammation; Interleukin-8; Iridoids; Lamiaceae; Neutrophils; Phenylpropionates; Plant Extracts; Tumor Necrosis Factor-alpha | 2018 |
Geniposide Protects against Obesity-Related Cardiac Injury through AMPK
Our previous study found that geniposide, an agonist of glucagon-like peptide-1 receptor (GLP-1R), protected against cardiac hypertrophy via the activation of AMP-activated protein kinase Topics: AMP-Activated Protein Kinases; Animals; Anti-Inflammatory Agents; Cardiomegaly; Diet, High-Fat; Heart; Inflammation; Iridoids; Male; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; Obesity; Signal Transduction; Sirtuin 1 | 2018 |
Oleuropein down-regulated IL-1β-induced inflammation and oxidative stress in human synovial fibroblast cell line SW982.
Rheumatoid arthritis (RA) is a chronic and systemic inflammatory autoimmune disease mainly characterized by aggressive hyperproliferation of synovial fibroblasts (SFs). It is accompained by a massive infiltration of inflammatory immune cells inducing progressive matrix degradation, destruction of cartilage and bone erosion through the production of inflammatory mediators. Oleuropein is the most prevalent phenolic component in olive leaves, seed, pulp and peel of unripe olives and is responsible for the characteristic bitter taste of unprocessed olives. This secoiridoid possesses well-documented pharmacological properties, including antioxidant and anti-inflammatory properties, and is available as a food supplement in Mediterranean countries. However, to date, anti-arthritic effects of oleuropein on SFs have not been yet elucidated. Thus, the aim of the present study was to investigate the potential effects of oleuropein, on IL-1β-induced production of inflammatory mediators and oxidative stress in the human synovial sarcoma cell line (SW982). In order to gain a better insight into mechanisms of action, signaling pathways were also explored. Cell viability was determined using the sulforhodamine B (SRB) assay. The expression of inflammatory cytokines IL-6, TNF-α, MMP-1 and MMP-3 was evaluated by ELISA. Moreover, changes in the protein expression of cyclooxygenase (COX)-2, microsomal prostaglandin E synthase-1 (mPGES-1) as well as mitogen-activated protein kinase (MAPKs), nuclear factor kappa B (NF-κB), and nuclear factor-erythroid 2-related and heme oxygenase-1 (HO-1) signalling pathways were analysed by western blot. Oleuropein exerted anti-inflammatory and anti-oxidant effects via down-regulation of MAPK and NF-κB signaling pathways and induction of Nrf2-linked HO-1 controlling the production of inflammatory mediators decreasing IL-6 and TNF-α cytokines, MMP-1 and MMP-3 levels and mPGES-1 and COX-2 overexpression. Thus, oleuropein might provide a basis for developing a new dietary strategy for the prevention and management of RA. Topics: Anti-Inflammatory Agents; Cell Line; Down-Regulation; Fibroblasts; Humans; Inflammation; Interleukin-1beta; Iridoid Glucosides; Iridoids; Oxidative Stress; Signal Transduction; Synovial Fluid; Tumor Necrosis Factor-alpha | 2017 |
Genipin Inhibits LPS-Induced Inflammatory Response in BV2 Microglial Cells.
Genipin, an aglycon of geniposide, has been reported to have anti-inflammatory effect. However, the anti-inflammatory activity of genipin on LPS-stimulated BV2 microglial cells has not been reported. In this study, we investigated the molecular mechanisms responsible for the anti-inflammatory activity of genipin both in vivo and in vitro. The levels of TNF-α, IL-1β, NO and PGE Topics: Animals; Anti-Inflammatory Agents; Cell Survival; Cells, Cultured; Inflammation; Iridoids; Lipopolysaccharides; Mice; Microglia; NF-kappa B; Nitric Oxide | 2017 |
Administration of geniposide ameliorates dextran sulfate sodium-induced colitis in mice via inhibition of inflammation and mucosal damage.
Ulcerative colitis (UC), an idiopathic inflammatory bowel disease, not only affects millions of patients worldwide, but also increases the risk of colon cancer. Geniposide is an iridoid glycoside and has many biological activities such as anti-inflammatory and antioxidant. However, its protective efficacy and mechanism of action against UC are still unclear. In this study, we aimed to investigate the protective effects and mechanisms of geniposide on dextran sulfate sodium (DSS)-induced experimental colitis in mice. The results revealed that geniposide alleviated body weight loss, disease activity index, colon length shortening and colonic pathological damage induced by DSS. Geniposide significantly suppressed pro-inflammatory cytokines by regulating NF-κB and PPARγ pathways in vivo and in vitro. Furthermore, geniposide also significantly regulated the expressions of ZO-1 and occludin in DSS-induced experimental colitis in mice and lipopolysaccharide (LPS)-triggered inflammation in Caco-2 cells. These findings indicated that geniposide may be a new natural chemopreventive agent to combat UC. Topics: Animals; Anti-Inflammatory Agents; Caco-2 Cells; Colitis; Colitis, Ulcerative; Colon; Cytokines; Dextran Sulfate; Disease Models, Animal; Humans; Inflammation; Inflammation Mediators; Intestinal Mucosa; Iridoids; Male; Mice; Mice, Inbred C57BL; NF-kappa B; PPAR gamma; Signal Transduction | 2017 |
Genipin attenuates cisplatin-induced nephrotoxicity by counteracting oxidative stress, inflammation, and apoptosis.
Cisplatin (CP) is a potent and widely used chemotherapeutic agent. However, the clinical benefits of CP are compromised because it elicits nephrotoxicity and ototoxicity. In this study, we investigated the nephroprotective effects of the phytochemical genipin (GP) isolated from the gardenia (Gardenia jasminoides) fruit, using a murine model of CP-induced nephropathy. GP pretreatment attenuated the CP-induced renal tissue injury by diminishing the serum blood urea nitrogen, creatinine, and cystatin C levels, as well as those of kidney injury molecule-1. In addition, GP attenuated the CP-induced oxidative/nitrative stress by suppressing the activation of NADPH oxidase, augmenting the endogenous antioxidant defense system, and diminishing the accumulation of 4-hydroxynonenal and 3-nitrotyrosine in renal tissues. Furthermore, reduced levels of proinflammatory cytokines such as tumor necrosis factor-alpha and interleukin-1 beta indicated that CP-induced renal inflammation was mitigated upon the treatment with GP. GP also attenuated the CP-induced activation of mitogen-activated protein kinases, excessive activities of caspase-3/7 and poly(ADP-ribose) polymerase, DNA fragmentation, and apoptosis. When administered 12h after the onset of kidney injury, GP showed a therapeutic effect by ameliorating CP-induced nephrotoxicity. Moreover, GP synergistically enhanced the CP-induced cell death of T24 human bladder cancer cells. Collectively, our data indicate that GP attenuated the CP-induced renal tissue injury by abrogating oxidative/nitrative stress and inflammation and by blocking cell death pathways, thereby improving the renal function. Thus, our results suggest that the use of GP may be a promising new protective strategy against cisplatin-induced nephrotoxicity. Topics: Aldehydes; Animals; Antioxidants; Apoptosis; Blood Urea Nitrogen; Caspase 3; Caspase 7; Cell Line, Tumor; Cisplatin; Creatinine; Cystatin C; Cytokines; Hepatitis A Virus Cellular Receptor 1; Humans; Inflammation; Iridoids; Kidney; Kidney Diseases; Male; Mice; Mice, Inbred C57BL; Mitogen-Activated Protein Kinases; Oxidative Stress; Poly(ADP-ribose) Polymerases; Tyrosine | 2017 |
Nepeta deflersiana attenuates isoproterenol-induced myocardial injuries in rats: Possible involvement of oxidative stress, apoptosis, inflammation through nuclear factor (NF)-κB downregulation.
Nepeta deflersiana (Lamiaceae) is a perennial herb used in the Saudi and Yemeni folk medicine as an anti-inflammatory, carminative, and antirheumatic agent.. This study explores the phytochemistry of the plant and the cardioprotective effect of N. deflersiana ethanolic extract (NDEE) against isoproterenol (ISP)-induced myocardial injury in rats.. Cardiac function, serum cardiac enzymes, myocardial antioxidants, inflammatory, and apoptotic biomarkers, and histopathological parameters were studied in ISP-injured Wistar rat heart tissues.. To the best of our knowledge, this is the first study to report the isolation of nine secondary metabolites from this plant: 1α-hydroxy-7α,14α,18-triacetoxy-isopimara-8,15-diene (1), β-sitosterol (2), lupeol (3), ursolic acid (4), 2,3-dihydroxy ursolic acid (5), caffeic acid (6), methyl rosmarinate (7), rosmarinic acid (8), and an irridoid glucoside 8-epi-7-deoxyloganic acid (9). To explain the mechanisms underlying the cardioprotective effect of NDEE, we evaluated the redox-sensitivity of NDEE in ISP-induced cardiac injury. The oral administration of NDEE (50 and 100 mg/kg b.w) prevented the depletion of endogenous antioxidants (CAT, SOD, NP-SH, and NO) and myocyte injury marker enzymes and inhibited lipid peroxidation (MDA, MPO). Moreover, NDEE downregulated the expression of pro-inflammatory cytokines (TNFα, IL-6, and IL-10) and apoptotic markers (caspase-3 and Bax) and upregulated the anti-apoptotic protein Bcl2. Furthermore, NDEE pretreatment significantly downregulated cardiac NF-κB (p65) expression, NF-κB-DNA binding activity, and MPO activity. Histological data showed that NDEE pretreatment reduced myonecrosis, edema, and infiltration of inflammatory cells and restored the architecture of cardiomyocytes.. NDEE demonstrated strong antioxidant, cardioprotective, anti-inflammatory, and anti-apoptotic potential against myocardial damage. This further endorses the use of N. deflersiana in Yemeni folk medicine against cardiovascular diseases. Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Apoptosis; Caspase 3; Cytokines; Down-Regulation; Heart; Inflammation; Iridoids; Isoproterenol; Lipid Peroxidation; Male; Myocardium; Nepeta; NF-kappa B; Oxidative Stress; Plant Extracts; Rats; Rats, Wistar; Sitosterols | 2017 |
Genipin inhibits allergic responses in ovalbumin-induced asthmatic mice.
Genipin is a natural compound isolated from the fruit of Gardenia jasminoides with various pharmacological effects. In this study, we investigated whether genipin effectively alleviates allergic responses in a murine model of ovalbumin (OVA)-induced asthma. The mice were administered an intraperitoneal injection of OVA on day 0 and 14 to boost the immune response; genipin was then administered from day 18 to 23 by oral gavage. On days 21 to 23, mice were OVA-challenged using am ultrasonic nebulizer, and airway hyperresponsiveness (AHR) was determined on day 24 by plethysmography. Genipin significantly reduced the inflammatory cell count in bronchoalveolar lavage fluids (BALF) and AHR, which were accompanied by lower interleukin-5 (IL-5), IL-13 and OVA-specific immunoglobulin (Ig) E levels in the BALF or serum from OVA-induced asthmatic mice. In histology, genipin significantly decreased airway inflammation and mucus hypersecretion in OVA-induced asthmatic mice. Additionally, genipin inhibited OVA-induced increases in the expression of inducible nitric oxide synthase and cyclooxygenase-2 proteins. Further, genipin reduced the activity and protein levels of matrix metalloproteinase-9 in lung tissue from OVA induced asthmatic mice. Overall, genipin effectively alleviated the asthmatic inflammatory response in an OVA-induced asthmatic model. Therefore, our results suggest that genipin has therapeutic potential for treating asthma. Topics: Animals; Anti-Inflammatory Agents; Asthma; Bronchial Hyperreactivity; Bronchoalveolar Lavage Fluid; Disease Models, Animal; Female; Gardenia; Hypersensitivity; Immunoglobulin E; Inflammation; Interleukin-13; Interleukin-5; Iridoids; Lung; Matrix Metalloproteinase 9; Mice; Mice, Inbred BALB C; Nitric Oxide Synthase Type II; Ovalbumin | 2017 |
Iridoids with Genipin Stem Nucleus Inhibit Lipopolysaccharide-Induced Inflammation and Oxidative Stress by Blocking the NF-κB Pathway in Polycystic Ovary Syndrome.
Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women, and it is usually characterized by chronic inflammation, oxidative stress, and altered microRNA expression. The aim of this study is to investigate how the effects of iridoids with genipin stem nucleus inhibit PCOS complications. The interactions between iridoids were investigated, as well.. The chronic inflammation cell model was induced using lipopolysaccharide (LPS) in the RAW 264.7 and KGN cell lines. Levels of mRNA and protein expression were quantified using real time-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis, respectively. The target of the iridoids was identified using the drug affinity responsive target stability (DARTS) method. The ability to scavenge free radicals was evaluated using the DPPH radical scavenging method and the ultra oxygen anion (O2-) radical scavenging method.. The cells recovered from the inflammatory conditions and showed significantly decreased levels of interleukins after treatment with iridoids. The iridoids were demonstrated to target NF-κB, inhibit the phosphorylation and degradation of IκB, inhibit the nuclear entry of NF-κB, and inhibit the expression of inflammatory factors. Though only genipin showed an efficient ability to scavenge O2-, the iridoids, IκB inhibitor (BAY 11-7085), and NF-κB inhibitor (PDTC) could inhibit LPS-induced oxidative stress on the cells, indicating that the iridoids exert their anti-oxidant effects via the NF-κB pathway. The expression levels of microRNAs (miRNAs) were also altered by LPS, but the iridoids could scarcely rescue the abnormal condition.. Chronic inflammation may be an important incentive for oxidative stress and abnormal microRNA expression in PCOS, and iridoids can protect patients from inflammatory damage by regulating the NF-κB pathway. Topics: Animals; Blotting, Western; Cell Line, Tumor; Female; Fluorescent Antibody Technique; Humans; Inflammation; Iridoids; Lipopolysaccharides; Mice; NF-kappa B; Nitriles; Oxidative Stress; Phosphorylation; Polycystic Ovary Syndrome; RAW 264.7 Cells; Reverse Transcriptase Polymerase Chain Reaction; Signal Transduction; Sulfones | 2017 |
Geniposide attenuates inflammatory response by suppressing P2Y14 receptor and downstream ERK1/2 signaling pathway in oxygen and glucose deprivation-induced brain microvascular endothelial cells.
Fructus gardenia is widely used for treatment of stroke and infectious diseases in Chinese medicine. Geniposide is the key bioactive compound related to the pharmacodynamic actions of gardenia on ischemic stroke. The molecular mechanism by which geniposide improves the ischemic brain injury was observed in the study.. Recent studies showed that geniposide had protective activities against the inflammatory response in ischemic stroke. However, the molecular mechanism of geniposide anti-inflammatory role has not yet been fully elucidated. In this study, we investigated the effect of geniposide on the expression of P2Y14 receptor and downstream signaling pathway in brain microvascular endothelial cells (BMECs).. An in vitro model of cerebral ischemia in BMECs was established by oxygen-glucose-deprivation (OGD). To further confirm the specific effect of geniposide on P2Y14 receptor and downstream signaling pathways, we set up a UDP-glucose (an agonist of the P2Y14 receptor) stimulated model. After administration of geniposide, the expression of P2Y14 receptor, phosphorylation of RAF-1, mitogen activated protein kinase kinase1/2 (MEK1/2), extracellular signal-regulated kinase 1/2 (ERK1/2), level of interleukin-8 (IL-8), interleukin-1β (IL-1β), monocyte chemotactic protein 1 (MCP-1) in BMECs were determined.. The mRNA and protein expression of P2Y14 in the rat BMECs were up-regulated in OGD-induced injury. After administration of Geniposide, the expression of P2Y14 receptor was significantly down-regulated, the phosphorylation of RAF-1, MEK1/2, ERK1/2 were suppressed. Similar data were obtained in UDP-glc stimulated model. We also observed that geniposide markedly declined the production of IL-8, IL-1β and MCP-1 in OGD-induced BMECs.. Geniposide exerted anti-inflammatory effects by interfering with the expression of P2Y14 receptor, which subsequently inhibits the downstream ERK1/2 signaling pathways and the release of the pro-inflammatory cytokines IL-8, MCP-1, IL-1β. Therefore, this study provides the evidence for gardenia's clinical application in cerebral ischemia. Topics: Animals; Cells, Cultured; Endothelial Cells; Extracellular Signal-Regulated MAP Kinases; Gene Expression Regulation; Glucose; Inflammation; Iridoids; Oxygen; Rats; Rats, Sprague-Dawley; Receptors, Purinergic P2Y; Signal Transduction | 2016 |
Loganin inhibits the inflammatory response in mouse 3T3L1 adipocytes and mouse model.
Atherosclerosis is a chronic inflammatory disease of the vascular walls. ApoCIII is an independent factor which promotes atherosclerotic processes. This study aimed to investigate whether Loganin administration inhibits the inflammatory response in vitro and in vivo. In the apoCIII-induced mouse adipocytes, the levels of cytokines, including TNF-α, MCP-1 and IL-6 were determined by enzyme-linked immunosorbent assay and their gene expressions were measured through RT-PCR. The phosphorylation of nuclear factor-κB (NF-κB) proteins was analyzed by Western blotting. Our results showed that Loganin markedly decreased TNF-α, MCP-1 and IL-6 concentrations as well as their gene expressions. Western blotting analysis indicated that Loganin suppressed the activation of NF-κB signaling. In the Tyloxapol-treated mouse model, Loganin reduced the contents of TC and TG in mouse serum. The results of Oil Red-O Staining showed that Loganin reduced the production of lipid droplets. So it is suggested that Loganin might be a potential therapeutic agent for preventing the inflammation stress in vitro and in vivo. Topics: 3T3 Cells; Adipocytes; Animals; Anti-Inflammatory Agents; Atherosclerosis; Chemokine CCL2; Disease Models, Animal; Humans; Inflammation; Interleukin-6; Iridoids; Lipid Metabolism; Mice; NF-kappa B; Phosphorylation; Polyethylene Glycols; Signal Transduction; Tumor Necrosis Factor-alpha | 2016 |
An injectable silk sericin hydrogel promotes cardiac functional recovery after ischemic myocardial infarction.
Acute myocardial infarction (MI) leads to morbidity and mortality due to cardiac dysfunction. Here we identify sericin, a silk-derived protein, as an injectable therapeutic biomaterial for the minimally invasive MI repair. For the first time, sericin prepared in the form of an injectable hydrogel has been utilized for cardiac tissue engineering and its therapeutical outcomes evaluated in a mouse MI model. The injection of this sericin hydrogel into MI area reduces scar formation and infarct size, increases wall thickness and neovascularization, and inhibits the MI-induced inflammatory responses and apoptosis, thereby leading to a significant functional improvement. The potential therapeutical mechanisms have been further analyzed in vitro. Our results indicate that sericin downregulates pro-inflammatory cytokines (TNF-α and IL-18) and chemokine (CCL2) and reduces TNF-α expression by suppressing the TLR4-MAPK/NF-κB pathways. Moreover, sericin exhibits angiogenic activity by promoting migration and tubular formation of human umbilical vessel endothelial cells (HUVECs). Also, sericin stimulates VEGFa expression via activating ERK phosphorylation. Further, sericin protects endothelial cells and cardiomyocytes from apoptosis by inhibiting the activation of caspase 3. Together, these diverse biochemical activities of sericin protein lead to a significant recovery of cardiac function. This work represents the first study reporting sericin as an effective therapeutic biomaterial for ischemic myocardial repair in vivo.. Intramyocardial biomaterial injection is thought to be a potential therapeutic approach to improve cardiac performance after ischemic myocardial infarction. In this study, we report the successful fabrication and in vivo application of an injectable sericin hydrogel for ischemic heart disease. We for the first time show that the injection of in situ forming crosslinked sericin hydrogel promotes heart functional recovery accompanied with reduced inflammatory responses, attenuated apoptosis and increased microvessel density in the infarcted hearts. Further, we reveal that the improvement in those aspects is ascribed to sericin protein's functional bioactivities that are comprehensively uncovered in this study. Thus, we identify sericin, a natural protein, as a biomaterial suitable for myocardial repair and demonstrate that the in vivo application of this injectable sericin hydrogel can be an effective strategy for treating MI. Topics: Animals; Apoptosis; Cell Movement; Cross-Linking Reagents; Cytokines; Cytoprotection; Fibrosis; Human Umbilical Vein Endothelial Cells; Hydrogel, Polyethylene Glycol Dimethacrylate; Inflammation; Injections; Iridoids; Male; MAP Kinase Signaling System; Mice; Mice, Inbred C57BL; Myocardial Infarction; Myocytes, Cardiac; Neovascularization, Physiologic; NIH 3T3 Cells; Rats; Recovery of Function; Sericins; Transcription, Genetic; Vascular Endothelial Growth Factor A | 2016 |
Iridoid-loganic acid versus anthocyanins from the Cornus mas fruits (cornelian cherry): Common and different effects on diet-induced atherosclerosis, PPARs expression and inflammation.
Cardiovascular benefits of fruits are attributed mainly to their (poly)phenolic constituents, especially anthocyanins. The main aim of our study is to compare effects of iridoids and anthocyanins from one fruit on diet-induced atherosclerosis. The cornelian cherry is a native or cultivated plant that grows in many European countries, used in cuisine and folk medicine. In our previous study, we showed its constituents and proved that oral administration of lyophilized fruits to hypercholesterolemic rabbits had preventive effects on atherosclerosis through the activation of PPARα expression. In this study, we have compared the effects of the main constituents of the cornelian cherry:iridoid loganic acid and anthocyanins.. Our experiment followed the model used in our previous study, in which rabbits were fed 1% cholesterol.. We showed that both loganic acid (20 mg/kg b.w.) and a mixture of anthocyanins (10 mg/kg b.w.) administered orally for 60 days had a positive impact on dyslipidemia caused by cholesterol-rich diet, although the effects of anthocyanins were more pronounced. Anthocyanins decreased total and LDL-cholesterol and triglycerides and increased HDL-cholesterol. Loganic acid showed similar effects, but only the triglycerides and HDL-cholesterol changes achieved statistical significance. Anthocyanins, and to a lesser extent loganic acid, significantly decreased intima thickness and intima/media ratio in the thoracic aorta. Both substances decrease ox-LDL in the plasma. Anthocyanins significantly increased expression of PPARγ and α in the liver. Loganic acid also increased their expression, but to a lesser extent. Conversely, loganic acid showed pronounced anti-inflammatory effects, decreasing TNF-α and IL-6 activity.. Our results imply that both substances have a positive effect on factors contributing to the development of diet-induced atherosclerosis. Our results also indicate the potential health benefits of fruits containing anthocyanins and iridoids, and support the idea of creating composed phytopharmaceuticals containing both groups of substances. Topics: Animals; Anthocyanins; Atherosclerosis; Body Weight; Cornus; Diet; Fruit; Inflammation; Interleukin-6; Iridoids; Lipoproteins, LDL; Liver; Phytotherapy; Plant Extracts; PPAR alpha; Rabbits; Triglycerides; Tumor Necrosis Factor-alpha | 2016 |
Oleuropein suppresses LPS-induced inflammatory responses in RAW 264.7 cell and zebrafish.
Oleuropein is one of the primary phenolic compounds present in olive leaf. In this study, the anti-inflammatory effect of oleuropein was investigated using lipopolysaccharide (LPS)-stimulated RAW 264.7 and a zebrafish model. The inhibitory effect of oleuropein on LPS-induced NO production in macrophages was supported by the suppression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In addition, our enzyme immunoassay showed that oleuropein suppressed the release of pro-inflammatory cytokines such as interleukin-1β (IL-1β) and interleukin-6 (IL-6). Oleuropein inhibited the translocation of p65 by suppressing phosphorylation of inhibitory kappa B-α (IκB-α). Oleuropein also decreased activation of ERK1/2 and JNK, which are associated with LPS-induced inflammation, and its downstream gene of AP-1. Furthermore, oleuropein inhibited LPS-stimulated NO generation in a zebrafish model. Taken together, our results demonstrated that oleuropein could reduce inflammatory responses by inhibiting TLR and MAPK signaling, and may be used as an anti-inflammatory agent. Topics: Animals; Anti-Inflammatory Agents; Cyclooxygenase 2; Inflammation; Interleukin-6; Iridoid Glucosides; Iridoids; Lipopolysaccharides; Macrophages; Mice; NF-kappa B; Olea; Plant Extracts; Plant Leaves; Zebrafish | 2015 |
Genipin suppresses NLRP3 inflammasome activation through uncoupling protein-2.
Incomplete clearance of apoptotic cells and reactive oxygen species (ROS) release are known to trigger inflammasome activation causing severe inflammation in acute lung injury and various metabolic and autoimmune diseases. Moreover, it has been reported that apoptotic cell clearance and ROS-mediated apoptosis critically depend on mitochondrial uncoupling protein-2 (UCP2). However, the relationship between UCP2 and inflammasome activation has not been studied. This report investigates the role of UCP2 in the expression and activation of NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome in human macrophages. We found that UCP2 overexpression significantly enhanced the expression levels of NLRP3. The NLRP3 expression levels were significantly suppressed in THP1 cells treated with genipin, a UCP2 inhibitor, compared to controls. In addition, genipin altered adenosine triphosphate (ATP)- and hydrogen peroxide (H2O2)-mediated interleukin-1 beta (IL-1β) secretion and significantly suppressed caspase-1 activity in inflammasome-activated human macrophages. Taken together, our results suggest that genipin modulates NLRP3 inflammasome activation and ATP- or H2O2-mediated IL-1β release. Topics: Apoptosis; Carrier Proteins; Caspase 1; Cells, Cultured; Enzyme Activation; Gene Expression Regulation; Humans; Inflammasomes; Inflammation; Interleukin-1beta; Ion Channels; Iridoids; Macrophages; Mitochondrial Proteins; NLR Family, Pyrin Domain-Containing 3 Protein; Reactive Oxygen Species; Uncoupling Protein 2 | 2015 |
Geniposide alleviates inflammation by suppressing MeCP2 in mice with carbon tetrachloride-induced acute liver injury and LPS-treated THP-1 cells.
Geniposide (GP), an iridoid glucoside extracted from Gardenia jasminoides Ellis fruits, has been used as a herbal medicine to treat liver and gall bladder disorders for many years. However the mechanism of anti-inflammatory is largely unknown. In this study, GP significantly attenuated inflammation in acute liver injury (ALI) mice model and in lipopolysaccharide (LPS)-induced THP-1 cells. It was demonstrated that GP obviously decreased the expression of Methyl-CpG binding protein 2 (MeCP2) in vivo and in vitro. Knockdown of MeCP2 with siRNA suppressed the expressions of IL-6 and TNF-α, while over-expression of MeCP2 had a proinflammatory effect on the expression of IL-6 and TNF-α in LPS-induced THP-1 cells. Mechanistically, it was indicated that GP had anti-inflammatory effects at least in part, through suppressing MeCP2. Interestingly, GP could attenuate expressions of Sonic hedgehog (Shh) and GLIS family zinc finger 1 (GLIS1) but increase Ptched1 (PTCH1) expression. Similar findings were also demonstrated at the protein level by siRNA MeCP2. Furthermore, over-expression of MeCP2 obviously increased Shh and GLIS1 expressions but reduced PTCH1 expression. Taken together, GP may serve as an effective modulator of MeCP2-hedgehog pathway (Hh)-axis during the pathogenesis of inflammation. Our findings shed light on the potential therapeutic feature of GP in recovering inflammatory diseases. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Carbon Tetrachloride Poisoning; Cell Line; Chemical and Drug Induced Liver Injury; Gene Expression; Gene Knockdown Techniques; Hedgehog Proteins; Inflammation; Interleukin-6; Iridoids; Liver; Methyl-CpG-Binding Protein 2; Mice; Mice, Inbred C57BL; RNA, Small Interfering; Tumor Necrosis Factor-alpha | 2015 |
Identification of plumericin as a potent new inhibitor of the NF-κB pathway with anti-inflammatory activity in vitro and in vivo.
The transcription factor NF-κB orchestrates many pro-inflammatory signals and its inhibition is considered a promising strategy to combat inflammation. Here we report the characterization of the natural product plumericin as a highly potent inhibitor of the NF-κB pathway with a novel chemical scaffold, which was isolated via a bioactivity-guided approach, from extracts of Himatanthus sucuuba, an Amazonian plant traditionally used to treat inflammation-related disorders.. A NF-κB luciferase reporter gene assay was used to identify NF-κB pathway inhibitors from H. sucuuba extracts. Monitoring of TNF-α-induced expression of the adhesion molecules VCAM-1, ICAM-1 and E-selectin by flow cytometry was used to confirm NF-κB inhibition in endothelial cells, and thioglycollate-induced peritonitis in mice to confirm effects in vivo. Western blotting and transfection experiments were used to investigate the mechanism of action of plumericin.. Plumericin inhibited NF-κB-mediated transactivation of a luciferase reporter gene (IC50 1 μM), abolished TNF-α-induced expression of the adhesion molecules VCAM-1, ICAM-1 and E-selectin in endothelial cells and suppressed thioglycollate-induced peritonitis in mice. Plumericin exerted its NF-κB pathway inhibitory effect by blocking IκB phosphorylation and degradation. Plumericin also inhibited NF-κB activation induced by transfection with the constitutively active catalytic subunit of the IκB kinase (IKK-β), suggesting IKK involvement in the inhibitory action of this natural product.. Plumericin is a potent inhibitor of NF-κB pathways with a new chemical scaffold. It could be further explored as a novel anti-inflammatory lead compound. Topics: Animals; Anti-Inflammatory Agents; Apocynaceae; Cell Adhesion Molecules; Disease Models, Animal; Dose-Response Relationship, Drug; HEK293 Cells; Human Umbilical Vein Endothelial Cells; Humans; I-kappa B Kinase; I-kappa B Proteins; Indenes; Inflammation; Inflammation Mediators; Iridoids; Male; Mice; Mice, Inbred C57BL; NF-kappa B; Phosphorylation; Plant Extracts; Signal Transduction; Thioglycolates; Transfection | 2014 |
The protective effect of the Cornus mas fruits (cornelian cherry) on hypertriglyceridemia and atherosclerosis through PPARα activation in hypercholesterolemic rabbits.
Cornelian cherry (Cornus mas L.) fruits have been used in traditional cuisine and in folk medicine in various countries. This study was conducted to evaluate the constituents and impact of cornelian cherry (C. mas L.) fruits lyophilisate on lipid levels, PPARα protein expression, atheromatous changes in the aorta, oxido-redox state, and proinflammatory cytokines in hypercholesterolemic rabbits. The HPLC-MS method was used for determining active constituents in cornelian cherry. In a subsequent in vivo study the protective effect of the cornelian cherry on diet-induced hyperlipidemia was studied using a rabbit model fed 1% cholesterol. Cornelian cherry (100mg/kg b.w.) or simvastatin (5mg/kg b.w.) were administered orally for 60 days. Two iridoids - loganic acid and cornuside - and five anthocyanins were identified as the main constituents of the cornelian cherry. The administering of the cornelian cherry led to a 44% significant decrease in serum triglyceride levels, as well as prevented development of atheromatous changes in the thoracic aorta. Cornelian cherry significantly increased PPARα protein expression in the liver, indicating that its hypolipidemic effect may stem from enhanced fatty acid catabolism. Simvastatin treatment did not affect PPAR-α expression. Moreover, the cornelian cherry had a significant protective effect on diet-induced oxidative stress in the liver, as well as restored upregulated proinflammatory cytokines serum levels. In conclusion, we have shown loganic acid to be the main iridoid constituent in the European cultivar of the cornelian cherry, and proven that the cornelian cherry could have protective effects on diet-induced hypertriglicerydemia and atherosclerosis through enhanced PPARα protein expression and via regulating oxidative stress and inflammation. Topics: Animals; Anthocyanins; Aorta, Thoracic; Atherosclerosis; Cornus; Fruit; Hypertriglyceridemia; Inflammation; Iridoids; Lipid Peroxidation; Liver; Molecular Structure; Oxidative Stress; PPAR alpha; Rabbits; Triglycerides | 2014 |
Dietary blue pigments derived from genipin, attenuate inflammation by inhibiting LPS-induced iNOS and COX-2 expression via the NF-κB inactivation.
The edible blue pigments produced by gardenia fruits have been used as value-added colorants for foods in East Asia for 20 years. However, the biological activity of the blue pigments derived from genipin has not been reported.. The anti-inflammatory effect of blue pigments was studied in lipopolysaccharide (LPS) stimulated RAW 264.7 macrophage in vitro. The secretions of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) were inhibited in concentration-dependent manner by blue pigments. Real-time reverse-transcription polymerase chain reaction (Real-time RT-PCR) analyses demonstrated that the mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-6, and tumor necrosis factor alpha (TNF-α) was inhibited, moreover, ELISA results showed that the productions of IL-6 and TNF-α were inhibited. Cell-based ELISA revealed the COX-2 protein expression was inhibited. The proteome profiler array showed that 12 cytokines and chemokines involved in the inflammatory process were down-regulated by blue pigments. Blue pigments inhibited the nuclear transcription factor kappa-B (NF-κB) activation induced by LPS, and this was associated with decreasing the DNA-binding activity of p65 and p50. Furthermore, blue pigments suppressed the degradation of inhibitor of κB (IκB) α, Inhibitor of NF-κB Kinase (IKK) α, IKK-β, and phosphorylation of IκB-α. The anti-inflammatory effect of blue pigments in vivo was studied in carrageenan-induced paw edema and LPS-injecting ICR mice. Finally, blue pigments significantly inhibited paw swelling and reduced plasma TNF-α and IL-6 production in vivo.. These results suggest that the anti-inflammatory properties of blue pigments might be the results from the inhibition of iNOS, COX-2, IL-6, IL-1β, and TNF-α expression through the down-regulation of NF-κB activation, which will provide strong scientific evidence for the edible blue pigments to be developed as a new health-enhancing nutritional food for the prevention and treatment of inflammatory diseases. Topics: Animals; Cell Line; Cyclooxygenase 2; Cytokines; Dinoprostone; Gene Expression Regulation, Enzymologic; Inflammation; Iridoids; Lipopolysaccharides; Macrophages; Male; Mice; Mice, Inbred ICR; Models, Chemical; NF-kappa B; Nitric Oxide Synthase Type II; Nitrites; Pigmentation | 2012 |
Xenogenic esophagus scaffolds fixed with several agents: comparative in vivo study of rejection and inflammation.
Most infants with long-gap esophageal atresia receive an esophageal replacement with tissue from stomach or colon, because the native esophagus is too short for true primary repair. Tissue-engineered esophageal conducts could present an attractive alternative. In this paper, circular decellularized porcine esophageal scaffold tissues were implanted subcutaneously into Sprague-Dawley rats. Depending on scaffold cross-linking with genipin, glutaraldehyde, and carbodiimide (untreated scaffolds : positive control; bovine pericardium : gold standard), the number of infiltrating fibroblasts, lymphocytes, macrophages, giant cells, and capillaries was determined to quantify the host response after 1, 9, and 30 days. Decellularized esophagus scaffolds were shown to maintain native matrix morphology and extracellular matrix composition. Typical inflammatory reactions were observed in all implants; however, the cellular infiltration was reduced in the genipin group. We conclude that genipin is the most efficient and best tolerated cross-linking agent to attenuate inflammation and to improve the integration of esophageal scaffolds into its surrounding tissue after implantation. Topics: Analysis of Variance; Animals; Antigens, CD; Cross-Linking Reagents; DNA; Esophagus; Graft Rejection; Immunohistochemistry; Inflammation; Iridoids; Leukocytes; Prostheses and Implants; Rats; Rats, Sprague-Dawley; Statistics, Nonparametric; Swine; Tissue Scaffolds; Transplantation, Heterologous | 2012 |
Genipin inhibits lipopolysaccharide-induced acute systemic inflammation in mice as evidenced by nuclear factor-κB bioluminescent imaging-guided transcriptomic analysis.
Genipin is a natural blue colorant in food industry. Inflammation is correlated with human disorders, and nuclear factor-κB (NF-κB) is the critical molecule involved in inflammation. In this study, the anti-inflammatory effect of genipin on the lipopolysaccharide (LPS)-induced acute systemic inflammation in mice was evaluated by NF-κB bioluminescence-guided transcriptomic analysis. Transgenic mice carrying the NF-κB-driven luciferase genes were administered intraperitoneally with LPS and various amounts of genipin. Bioluminescent imaging showed that genipin significantly suppressed LPS-induced NF-κB-dependent luminescence in vivo. The suppression of LPS-induced acute inflammation by genipin was further evidenced by the reductions of cytokine levels in sera and organs. Microarray analysis of these organs showed that the transcripts of 79 genes were differentially expressed in both LPS and LPS/genipin groups, and one third of these genes belonged to chemokine ligand, chemokine receptor, and interferon (IFN)-induced protein genes. Moreover, network analysis showed that NF-κB played a critical role in the regulation of genipin-affected gene expression. In conclusion, we newly identified that genipin exhibited anti-inflammatory effects in a model of LPS-induced acute systemic inflammation via downregulation of chemokine ligand, chemokine receptor, and IFN-induced protein productions. Topics: Animals; Cell Line; Enzyme-Linked Immunosorbent Assay; Gene Expression Profiling; Humans; Immunohistochemistry; Inflammation; Iridoids; Lipopolysaccharides; Luminescence; Mice; NF-kappa B; Real-Time Polymerase Chain Reaction; Transcriptome | 2012 |
Geniposide reduces inflammatory responses of oxygen-glucose deprived rat microglial cells via inhibition of the TLR4 signaling pathway.
Geniposide, an iridoid glycoside isolated from Gardenia, has neuroprotective activities against oxidative stress and inflammation. The present study investigated the in vivo protective effect of geniposide on ischemia/reperfusion-injured rats by middle cerebral artery occlusion (MCAO), and the inhibitory effects of geniposide and mechanisms against activation of microglial cells by oxygen-glucose deprivation (OGD) in vitro. Male SD rats were subjected to treatment with geniposide at 15, 30 and 60 mg/kg immediately after MCAO. Cerebral infarct volume and microglial cell activation were assessed following 24 h reperfusion. Cultured primary rat microglial cells were exposed to geniposide at the concentrations of 12.5, 25 and 50 μg/mL during 4 h of OGD. The effects of geniposide were evaluated in terms of (1) cell viability; (2) secretion of TNF-α, IL-1β, IL-6, IL-8 and IL-10 into culture media; (3) TLR4 mRNA expression; (4) protein expression of TLR4, p-ERK1/2, p-IκB, p-p38, nuclear and cytoplasmic fraction NF-κB p65; and (5) nuclear transfer of NF-κB p65. Geniposide reduced the infarct volume and inhibited the activation of microglial cells in ischemic penumbra in vivo. OGD increased cell viability and release of TNF-α, IL-1β, IL-6, IL-8 and IL-10, these effects were suppressed by geniposide. Geniposide also attenuated the increases in the OGD-induced TLR4 mRNA and protein levels. In addition, geniposide at 25 and 50 μg/mL downregulated the phosphorylation of ERK, IκB and p38, as well as inhibited nuclear transcriptional activity triggered via NF-κB p65 in microglial cells by OGD. In conclusion, geniposide displays a neuroprotective effect on ischemia/reperfusion-injured rats in vivo and inhibits OGD-induced activation of microglial cells by attenuating inflammatory factors and NF-κB activation in vitro. Topics: Animals; Culture Media; Cytokines; Dose-Response Relationship, Drug; Glucose; Inflammation; Iridoids; Male; Microglia; Oxygen; Rats; Rats, Sprague-Dawley; Signal Transduction; Toll-Like Receptor 4 | 2012 |
Biocompatibility of genipin and glutaraldehyde cross-linked chitosan materials in the anterior chamber of the eye.
Chitosan is a naturally occurring cationic polysaccharide and has attracted much attention in the past decade as an important ophthalmic biomaterial. We recently demonstrated that the genipin (GP) cross-linked chitosan is compatible with human retinal pigment epithelial cells. The present work aims to further investigate the in vivo biocompatibility of GP-treated chitosan (GP-chi group) by adopting the anterior chamber of a rabbit eye model. The glutaraldehyde (GTA) cross-linked samples (GTA-chi group) were used for comparison. The 7-mm-diameter membrane implants made from either non-cross-linked chitosan or chemically modified materials with a cross-linking degree of around 80% were inserted in the ocular anterior chamber for 24 weeks and characterized by slit-lamp and specular microscopic examinations, intraocular pressure measurements, and corneal thickness measurements. The interleukin-6 expressions at mRNA level were also detected by quantitative real-time reverse transcription polymerase chain reaction. Results of clinical observations showed that the overall ocular scores in the GTA-chi groups were relatively high. In contrast, the rabbits bearing GP-chi implants in the anterior chamber of the eye exhibited no signs of ocular inflammation. As compared to the non-cross-linked counterparts, the GP-chi samples improved the preservation of corneal endothelial cell density and possessed better anti-inflammatory activities, indicating the benefit action of the GP cross-linker. In summary, the intracameral tissue response to the chemically modified chitosan materials strongly depends on the selection of cross-linking agents. Topics: Animals; Anterior Chamber; Biocompatible Materials; Chitosan; Cornea; Cross-Linking Reagents; Gene Expression Regulation; Glutaral; Inflammation; Interleukin-6; Intraocular Pressure; Iridoids; Prostheses and Implants; Rabbits | 2012 |
Anti-inflammatory activity of Penstemon gentianoides and Penstemon campanulatus.
Penstemon gentianoides (Kunth) Poir. and Penstemon campanulatus (Cav.) Willd. (Plantaginaceae) are important medicinal plants in Mexico used by indigenous people for their anti-inflammatory effects and to also reduce rheumatic pains.. In addition to radical scavenging activity, the anti-inflammatory activity of the extracts, fractions and compounds of these plants were investigated and reported here for the first time.. The anti-inflammatory activities of MeOH, CH(2)Cl(2), and ethyl acetate extracts and iridoid, flavonoids, and phenylpropanoids from Penstemon gentianoides and P. campanulatus were studied in the TPA-induced mouse ear edema model. In addition, antioxidant activity against DPPH, crocin and β-carotene were investigated.. All extracts were tested and a selection of known compounds significantly (p <0.05) inhibited mouse ear edema. The results showed that CH(2)Cl(2) extracts of roots and stems from P. gentianoides and ethyl acetate extracts of leaves from P. gentianoides and P. campanulatus, as well as luteolin, diosmetin, penstemide and verbascoside produced the most positive results. Of all substances tested, the CH(2)Cl(2) extract of P. gentianoides roots was the most powerful inhibitor (ED(50)=0.07 mg/ear), with activity comparable to that of indomethacin. These extracts, compounds purified, as well as known compounds, inhibited oxidation of β-carotene and crocin.. These findings showed that the iridoid monoterpenes, flavonoids and phenylpropanoids present in these plants species may all contribute to the observed anti-inflammatory activity. Additionally, the observed antioxidant activity is correlated with the anti-inflammatory activity of these plants and the phytochemicals derived from them. Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Disease Models, Animal; Edema; Flavonoids; Indomethacin; Inflammation; Iridoids; Male; Medicine, Traditional; Mexico; Mice; Penstemon; Plant Extracts; Rats; Rats, Wistar; Solvents | 2011 |
Genipin inhibits the inflammatory response of rat brain microglial cells.
Microglia are the prime effectors in immune and inflammatory responses of the central nervous system (CNS). Under pathological conditions, the activation of these cells helps restore CNS homeostasis. However, chronic microglial activation endangers neuronal survival through the release of various proinflammatory and neurotoxic factors. Thus, negative regulators of microglial activation have been considered as potential therapeutic candidates to target neurodegeneration, such as that in Alzheimer's and Parkinson's diseases. Genipin, the aglycon of geniposide found in gardenia fruit has long been considered for treatment of various disorders in traditional oriental medicine. Genipin has recently been reported to have diverse pharmacological functions, such as antimicrobial, antitumor, and anti-inflammatory effects. The specific aim of this study was to examine whether genipin represses brain microglial activation. Genipin was effective at inhibiting LPS-induced nitric oxide (NO) release from cultured rat brain microglial cells. Genipin reduced the LPS-stimulated production of tumor necrosis factor-alpha, interleukin-1beta, prostaglandin E(2), intracellular reactive oxygen species, and NF-kappaB activation. In addition, genipin reduced NO release from microglia stimulated with interferon-gamma and amyloid-beta. Both pretreatment and post-treatment of genipin to LPS-stimulated microglia were effective at decreasing NO release. Furthermore, genipin effectively inhibited microglial activation in a mouse model of brain inflammation. These results suggest that genipin provide neuroprotection by reducing the production of various neurotoxic molecules from activated microglia. Topics: Amyloid beta-Peptides; Animals; Anti-Inflammatory Agents; Blotting, Western; Brain; Cell Survival; Cells, Cultured; Cytokines; Immunohistochemistry; Indicators and Reagents; Inflammation; Interferon-gamma; Iridoid Glycosides; Iridoids; Lipopolysaccharides; Macrophage Activation; Male; Mice; Mice, Inbred C57BL; Microglia; NF-kappa B; Nitrites; Rats; Reactive Oxygen Species | 2010 |
Cornel iridoid glycoside inhibits inflammation and apoptosis in brains of rats with focal cerebral ischemia.
The capacity of cornel iridoid glycoside (CIG) to suppress the manifestations of ischemic stroke was investigated. CIG was administered to rats by the intragastric route once daily for 7 days. Focal cerebral ischemia was induced by 2 h of middle cerebral artery occlusion followed by 24 h of reperfusion. In non-treated rats large infarct areas were observed within 24 h of reperfusion. Examination of the ischemic cerebral cortex revealed microglia and astrocyte activation, increased interleukin-1beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) concentrations, increased DNA fragmentation in the ischemia penumbra, elevated Bax expression, increased caspase-3 cleavage, and decreased Bcl-2 expression. Pretreatment with CIG decreased the infarct area, DNA fragmentation, IL-1beta and TNF-alpha concentrations, microglia and astrocyte activation, Bax expression, and caspase-3 cleavage while increasing Bcl-2 expression. CIG exerts anti-neuroinflammatory and anti-apoptotic effects which should prove beneficial for prevention or treatment of stroke. Topics: Animals; Apoptosis; Brain Ischemia; Cerebral Infarction; Cornus; Glycosides; Infarction, Middle Cerebral Artery; Inflammation; Interleukin-1beta; Iridoids; Male; Neuroglia; Plant Extracts; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Tumor Necrosis Factor-alpha | 2010 |
Characteristics and biocompatibility of a biodegradable genipin-cross-linked gelatin/β-tricalcium phosphate reinforced nerve guide conduit.
To modulate the mechanical properties of nerve guide conduit for surgical manipulation, this study develops a biodegradable composite containing genipin cross-linked gelatin annexed with β-tricalcium phosphate ceramic particles as a nerve guide material. The conduit was dark bluish and round with a rough and compact outer surface compared to the genipin cross-linked gelatin conduit (without β-tricalcium phosphate). Water uptake and swelling tests indicate that the conduit noticeably increases the stability in water, and the hydrated conduit does not collapse and stenose. The conduit has a sufficiently high level of mechanical properties to serve as a nerve guide. After subcutaneous implantation on the dorsal side of a rat, the degraded conduit only evokes a mild tissue response, and the formation of a very thin fibrous capsule surrounds the conduit. This paper assesses the effectiveness of the conduit as a guidance channel when we use it to repair a 10 mm gap in the rat's sciatic nerve. The experimental results show no gross inflammatory reactions of the peripheral nerve tissues at the implantation site in either group. In overall gross examination, the diameter of the intratubular and newly formed nerve fibers in the conduits exceeds that of the silicone tubes during the implantation period. The quantitative results indicate the superiority of the conduits over the silicone tubes. This study microscopically observes the nerve regeneration in the tissue section at the middle region of all implanted conduits. Therefore, the histomorphometric assessment demonstrates that the conduit could be a candidate for peripheral nerve repair. Topics: Absorbable Implants; Animals; Biocompatible Materials; Calcium Phosphates; Cross-Linking Reagents; Gelatin; Guided Tissue Regeneration; Implants, Experimental; Inflammation; Iridoid Glycosides; Iridoids; Nerve Regeneration; Peripheral Nerves; Rats; Sciatic Nerve | 2010 |
Evaluation of loganin, iridoid glycoside from Corni Fructus, on hepatic and renal glucolipotoxicity and inflammation in type 2 diabetic db/db mice.
Previously, we have reported that Corni Fructus possessed hypoglycemic and hypocholesterolemic effects in streptozotocin-induced type 1 diabetic rats and diet-induced hypercholesterolemic rats. Herein, we have focused on the effect and mechanism of loganin, a major iridoid glycoside of Corni Fructus, on the type 2 diabetic db/db mice. Loganin was orally administered to db/db mice at a dose of 20 or 100 mg/kg body weight daily for 8 weeks. The biochemical factors and expressions of protein and mRNA related to lipid metabolism, inflammation, advanced glycation endproducts, and its receptor were measured. In loganin-treated db/db mice, hyperglycemia and dyslipidemia were ameliorated in both the serum and hepatic tissue; however, in the kidney, only triglyceride was reduced. The enhanced oxidative stress was alleviated by loganin through a decrease in thiobarbituric acid-reactive substances (liver and kidney) and reactive oxygen species (serum, liver, and kidney), as well as augmentation of the oxidized to reduced glutathione ratio (liver and kidney). The marked lipid-regulatory effect of loganin was exerted in the liver of type 2 diabetic mice via suppressing mRNA expressions related to lipid synthesis and adjusting the abnormal expression of peroxisome proliferator-activated receptor α and sterol regulatory-element binding protein in the nucleus. Furthermore, loganin inhibited advanced glycation endproduct formation and the expression of its receptor, and nuclear factor-kappa B-induced inflammation in the hepatic tissue of db/db mice. Loganin exhibits protective effects against hepatic injury and other diabetic complications associated with abnormal metabolic states and inflammation caused by oxidative stress and advanced glycation endproduct formation. Topics: Animals; Biomarkers; Body Weight; Cholesterol; Cornus; Cyclooxygenase 2; Diabetes Mellitus, Type 2; Drinking; Fatty Acids; Gene Expression Regulation, Enzymologic; Glucose; Glycation End Products, Advanced; Hematologic Tests; Inflammation; Iridoids; Kidney; Lipid Metabolism; Liver; Lysine; Male; Mice; Nitric Oxide Synthase Type II; Organ Size; Oxidative Stress; PPAR alpha; RNA, Messenger; Sterol Regulatory Element Binding Protein 1; Sterol Regulatory Element Binding Protein 2; Transcription Factor RelA; Triglycerides | 2010 |
Anti-inflammatory and analgesic activities of SKLJI, a highly purified and injectable herbal extract of Lonicera japonica.
The parenteral route has many merits over the oral route, including greater predictability, reproducibility of absorption, and rapid drug action, but injectable phytomedicines are uncommon due to protein precipitating tannin and hemolytic saponin components. In this study, in an effort to develop a safe injectable analgesic phytomedicine, we prepared a tannin and saponin-free Lonicera japonica extract, SKLJI, through fractionation and column purification, and evaluated its anti-inflammatory and analgesic activities in in vivo experimental models of inflammation and pain. The removal of tannin and saponin resulted in loganin and sweroside-enriched SKLJI and it showed reduced hemolysis and protein precipitation. In efficacy tests, SKLJI inhibited croton oil- and arachidonic acid-induced ear edema, acetic acid-induced writhing, and carrageenan-induced rat hind paw hyperalgesia. Inhibition of cylcooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and 5-lipoxyfenase (5-LO) activities by SKLJI appeared to be the mechanism underlying anti-inflammatory and analgesic efficacy. Loganin and sweroside also showed anti-inflammatory and analgesic activities, suggesting that they might be active principles in the efficacy of SKLJI. These results suggest that SKLJI is a viable candidate for a new anti-inflammatory and analgesic phytomedicine that can be administered by the parenteral route. Topics: Analgesics; Animals; Anti-Inflammatory Agents; Arachidonate 5-Lipoxygenase; Cyclooxygenase 2; Enzyme Inhibitors; Hemolysis; Inflammation; Injections, Intravenous; Iridoid Glucosides; Iridoids; Lonicera; Male; Mice; Nitric Oxide Synthase Type II; Plant Extracts; Rats; Rats, Sprague-Dawley | 2010 |
Genipin enhances the mechanical properties of tissue-engineered cartilage and protects against inflammatory degradation when used as a medium supplement.
Genipin is a naturally-derived biocompatible cross-linking agent commonly used to generate three dimensional tissue-engineered scaffolds or to fix biologically derived scaffolds prior to implantation. Here we propose a novel use for genipin as a long-term culture medium supplement to promote cross-linking of de novo cell products that are produced in engineered cartilage. We hypothesize that the application of genipin will stabilize the extracellular matrix components and increase the mechanical properties of developing engineered cartilage. Chondrocytes encapsulated in agarose hydrogel (a neutrally charged polysaccharide scaffold that is unaffected by genipin cross-linking) were cultured in a chemically-defined growth medium that was supplemented with varying concentrations of genipin (22 microM, 220 microM, 2200 microM) for various durations (continuous or intermittent). Tissues developed significantly higher mechanical properties (+28% dynamic modulus and +20% Young's modulus) by day 42 with genipin treatment compared to untreated controls. These increases were not immediate, but presented over culture time after genipin treatment. The genipin treated groups were also more resistant to cytokine-induced degradation with interleukin-1alpha; maintaining an E(Y) (+218%), G* (+390%) and glycosaminoglycan (GAG) content (+477%) over genipin-untreated constructs subjected to interleukin. We hypothesize two mechanisms through which the physical enhancement of tissue properties may be fostered: (1) by cross-link mediated reorganization and enhanced retention of cell-elaborated extracellular matrix components, and (2) through reduction of the loss of extracellular matrix components by increasing their resilience to catabolic degradation. These studies demonstrate a potential use of genipin as a medium supplement to develop enhanced engineered cartilage. Topics: Animals; Biocompatible Materials; Cartilage; Cattle; Chondrocytes; Compressive Strength; Culture Media; Cytokines; Extracellular Matrix; Glycosaminoglycans; Inflammation; Interleukin-1alpha; Iridoid Glycosides; Iridoids; Materials Testing; Tissue Engineering | 2009 |
Effects of catalpol on mitochondrial function and working memory in mice after lipopolysaccharide-induced acute systemic inflammation.
The aim of this study was to investigate whether catalpol could facilitate recovery from lipopolysaccharide (LPS)-induced cognitive deficits and protect brain mitochondrial function from LPS-induced acute systemic inflammation. In the study, except control group, mice were challenged with a single dose of LPS (100 microg/mouse, i.p.) to mimic an acute peripheral infection. The results showed that LPS enhanced nuclear factor kappa B (NF-kappaB) activation and induced a loss in mitochondrial integrity as shown by a significant decrease in membrane potential and increase in mitochondrial permeability transition pore opening. Pretreatment with catalpol (10 mg/kg d, i.p.) for 10d before injection of LPS reversed the memory deficits induced by LPS, protected brain mitochondrial function, and attenuated LPS-induced NF-kappaB activation. Taken together, these data indicate that catalpol may possess therapeutic potential against LPS-induced acute systemic inflammation by attenuating NF-kappaB activation and protecting mitochondrial function in cerebral cortex and hippocampus. Topics: Animals; Anti-Inflammatory Agents; Brain; Glucosides; Inflammation; Iridoid Glucosides; Iridoids; Lipopolysaccharides; Maze Learning; Memory; Mice; Mitochondria; NF-kappa B | 2009 |
Genipin blues: an alternative non-toxic crosslinker for heart valves?
One approach in tissue-engineering involves the implantation of decellularized, xenogenic scaffolds, with the expectation of repopulation in vivo. However, a major limitation of this method is the propensity to induce a strong immune host response. The study aim was to mitigate this immunogenicity by employing a crosslinking treatment with genipin.. Porcine matrices were prepared using a detergent-enzymatic treatment and fixed in 0.01% or 0.001% aqueous genipin. The mechanical properties of the matrices were monitored by tensile strength testing. The survival of chicken fibroblasts was used to determine cell-friendliness of the matrices. Non-fixed, decellularized biological scaffolds (n = 3) were implanted in a sheep model and compared to an equal number of genipin-fixed scaffolds (n = 6). Matrices implanted in the pulmonary position were explanted after six weeks and examined using light and transmission electron microscopy. The antibody reaction against porcine tissue in sheep serum was also determined.. Statistically significant differences were found between non-fixed leaflets, 0.001% genipin-and 0.6% glutaraldehyde (GA)-fixed leaflets for work to maximum load (non-fixed 0.00646 J; genipin-fixed 0.00509 J; GA-fixed 0.00543 J) and stiffness (non-fixed 9281 N/m; genipin-fixed 16214 N/m; GA-fixed 14401 N/m). Genipin-treated matrices were not cytotoxic. For all concentrations of genipin a high proportion of viable cells was present (79-100%). Low-dose GA (10 microg/ml) showed a distinct cytotoxicity (24.8% viability). At explant, an intense chronic inflammatory response was observed in non-fixed matrices, in contrast to genipin-fixed scaffolds. The sheep serum showed a marked decrease in IgG response in both 0.001% and 0.01% genipin-fixed matrices (IgG 30 and 20, respectively) when compared to non-fixed matrices (IgG 40).. Genipin crosslinking of the matrices attenuated, but did not eliminate, the inflammatory host reaction. Whether genipin treatment might extend the durability of xenogenic scaffolds remains to be investigated. Topics: Animals; Bioprosthesis; Cross-Linking Reagents; Glutaral; Heart Valve Prosthesis; Immunoglobulin G; Inflammation; Iridoid Glycosides; Iridoids; Microscopy, Electron, Transmission; Pulmonary Valve; Sheep; Swine; Tensile Strength; Tissue Engineering; Tissue Scaffolds | 2008 |
Down-regulation of NR2B receptors partially contributes to analgesic effects of Gentiopicroside in persistent inflammatory pain.
Gentiopicroside is one of the secoiridoid compound isolated from Gentiana lutea. It exhibits analgesic activities in the mice. The anterior cingulate cortex (ACC) is a forebrain structure known for its roles in pain transmission and modulation. Painful stimuli potentiate the prefrontal synaptic transmission and induce glutamate NMDA NR2B receptor expression in the ACC. But little is known about Gentiopicroside on the persistent inflammatory pain and chronic pain-induced synaptic transmission changes in the ACC. The present study was undertaken to investigate its analgesic activities and central synaptic modulation to the peripheral painful inflammation. Gentiopicroside produced significant analgesic effects against persistent inflammatory pain stimuli in mice. Systemic administration of Gentiopicroside significantly reversed NR2B over-expression during the chronic phases of persistent inflammation caused by hind-paw administration of complete Freunds adjuvant (CFA) in mice. Whole-cell patch clamp recordings revealed that Gentiopicroside significantly reduced NR2B receptors mediated postsynaptic currents in the ACC. Our findings provide strong evidence that analgesic effects of Gentiopicroside involve down-regulation of NR2B receptors in the ACC to persistent inflammatory pain. Topics: Analgesics, Non-Narcotic; Animals; Blotting, Western; Chronic Disease; Cyclic AMP; Down-Regulation; Excitatory Postsynaptic Potentials; Freund's Adjuvant; Glucosides; Glutamic Acid; Inflammation; Iridoid Glucosides; Iridoids; Mice; Mice, Inbred C57BL; Pain; Pain Measurement; Patch-Clamp Techniques; Receptors, GABA-A; Receptors, N-Methyl-D-Aspartate; Synaptic Transmission | 2008 |
Noninvasive nuclear factor-kappaB bioluminescence imaging for the assessment of host-biomaterial interaction in transgenic mice.
The inflammatory response is a key component in the biocompatibility of biomaterials. Among the factors that control the development of inflammation is a critical molecule nuclear factor-kappaB (NF-kappaB). Therefore, the aim of this study was to assess the feasibility of noninvasive whole-body real-time imaging for the evaluation of host-biomaterial interaction in the NF-kappaB transgenic mice. Transgenic mice, carrying the luciferase gene under the control of NF-kappaB, were constructed. In vivo bioluminescence imaging showed that the constitutive and induced NF-kappaB activities of transgenic mice were detected in most of the lymphoid tissues, demonstrating that NF-kappaB-driven luminescence reflected the inflammatory response in vivo. By the implantation of genipin-cross-linked gelatin conduit (GGC) and bacterial endotoxin-immersed GGC in the dorsal region, we detected a strong and specific luminescent signal from the tissue around the bacterial endotoxin-immersed GGC implant. Histological and immunohistochemical analysis also demonstrated that inflammation, characterized by the infiltration of immune cells, the accumulation of fluid, and the activation of NF-kappaB, was evoked around the same region. The correlation between the bioluminescence imaging and histological changes indicated that noninvasive imaging technique could be used to monitor the real-time inflammation in the implanted mice. Topics: Animals; Biocompatible Materials; Diagnostic Imaging; Feasibility Studies; Gelatin; Gene Expression Regulation; Genes, Reporter; Immunohistochemistry; Inflammation; Iridoid Glycosides; Iridoids; Luciferases; Luminescent Measurements; Materials Testing; Mice; Mice, Transgenic; Microinjections; NF-kappa B; Prostheses and Implants | 2007 |
Anti-inflammatory evaluation of gardenia extract, geniposide and genipin.
Gardenia fruit has been traditionally used as a folk medicine for centuries in Asian countries. Extraction with ethanol was used to obtain an extract (GFE) that contains two known constituents, geniposide and genipin, which were subsequently evaluated for anti-inflammatory activity. GFE, genipin, and geniposide showed acute anti-inflammatory activities in carrageenan-induced rat paw edema. In a dose-dependent manner, GFE also inhibited vascular permeability induced by acetic acid. Both genipin and geniposide inhibited production of exudate and nitric oxide (NO) in the rat air pouch edema model. However, genipin possessed stronger anti-inflammatory activity than geniposide, as demonstrated by the results with carrageenan-induced rat paw edema, carrageenan-induced air pouch formation, and measurement of NO content in the exudates. GFE caused a dose-dependent inhibition of acetic acid-induced abdominal writhing in mice. Collectively, genipin, rather than geniposide, is the major anti-inflammatory component of gardenia fruit. Topics: Animals; Anti-Inflammatory Agents; Carrageenan; Dose-Response Relationship, Drug; Edema; Female; Fruit; Gardenia; Inflammation; Iridoid Glycosides; Iridoids; Male; Mice; Nitrates; Plant Extracts; Pyrans; Rats; Rats, Sprague-Dawley | 2006 |
Dose-response study of effect of oleuropein, an olive oil polyphenol, in an ovariectomy/inflammation experimental model of bone loss in the rat.
This study was carried out to assess the dose-dependent bone-sparing effect of oleuropein, an olive oil phenolic compound with anti-inflammatory and anti-oxidative properties, on bone loss induced by talc granulomatosis in oestrogen-deficient rat.. Among 98 rats, 20 were sham-operated (SH) while the others (78) were ovariectomised (OVX). The SH and 26 OVX rats (controls) were given a standard diet for 100 days. The 52 remaining OVX rats were allocated to 4 groups that received oleuropein at 2.5, 5, 10 or 15 mg/kg body weight per day for 100 days. Three weeks before necropsy, an inflammation was induced by subcutaneous injections of talc in half of the SH and OVX rats and in all oleuropein-treated animals.. Castration was associated with a decreased bone mineral density (BMD). In OVX rats, inflammation, characterised by an increase of the spleen weight and plasma fibrinogen levels, exacerbated this bone loss, as shown by values of BMD of the total femur metaphyseal and diaphyseal subregions. The 4 doses of oleuropein reduced bone loss and improved inflammatory biomarkers excepted for 5mg/kg BW.. Every dose of oleuropein elicited protective effects on bone mass in this model of ovariectomy associated with inflammation, probably by modulating inflammatory parameters. Topics: Animals; Anti-Infective Agents; Biomarkers; Bone Density; Bone Density Conservation Agents; Dose-Response Relationship, Drug; Female; Fibrinogen; Inflammation; Iridoid Glucosides; Iridoids; Olive Oil; Organ Size; Osteoporosis; Ovariectomy; Plant Oils; Pyrans; Random Allocation; Rats; Rats, Wistar; Spleen | 2006 |
Catalpol protects dopaminergic neurons from LPS-induced neurotoxicity in mesencephalic neuron-glia cultures.
Inflammation plays an important role in the pathogenesis of Parkinson's disease (PD). Microglia, the resident immune cells in the central nervous system, are pivotal in the inflammatory reaction. Activated microglia can induce expression of inducible nitric-oxide synthase (iNOS) and release significant amounts of nitric oxide (NO) and TNF-alpha, which can damage the dopaminergic neurons. Catalpol, an iridoid glycoside, contained richly in the roots of Rehmannia glutinosa, was found to be neuroprotective in gerbils subjected to transient global cerebral ischemia. But the effect of catalpol on inflammation-mediated neurodegeneration has not been examined. In this study, microglia in mesencephalic neuron-glia cultures were activated with lipopolysaccharide (LPS) and the aim of the study was to examine whether catalpol could protect dopaminergic neurons from LPS-induced neurotoxicity. The results showed that catalpol significantly reduced the release of reactive oxygen species (ROS), TNF-alpha and NO after LPS-induced microglial activation. Further, catalpol attenuated LPS-induced the expression of iNOS. As determined by immunocytochemical analysis, pretreatment by catalpol dose-dependently protected dopaminergic neurons against LPS-induced neurotoxicity. These results suggest that catalpol exerts its protective effect on dopaminergic neurons by inhibiting microglial activation and reducing the production of proinflammatory factors. Thus, catalpol may possess therapeutic potential against inflammation-related neurodegenerative diseases. Topics: Animals; Cells, Cultured; Coculture Techniques; Dopamine; Dose-Response Relationship, Drug; Gene Expression Regulation, Enzymologic; Glucosides; Inflammation; Iridoid Glucosides; Iridoids; Lipopolysaccharides; Mesencephalon; Mice; Nerve Degeneration; Neurodegenerative Diseases; Neuroglia; Neurons; Neuroprotective Agents; Nitric Oxide; Nitric Oxide Synthase Type II; Reactive Oxygen Species; Tumor Necrosis Factor-alpha | 2006 |
Olive oil and its main phenolic micronutrient (oleuropein) prevent inflammation-induced bone loss in the ovariectomised rat.
The present study was designed to evaluate the effect of olive oil and its main polyphenol (oleuropein) in ovariectomised rats with or without inflammation. Rats (6 months old) were ovariectomised or sham-operated as control. Ovariectomised rats were separated into three groups receiving different diets for 3 months: a control diet with 25 g peanut oil and 25 g rapeseed oil/kg (OVX), the control diet with 50 g olive oil/kg or the control diet with 0.15 g oleuropein/kg. The sham-operated group was given the same control diet as OVX. Inflammation was induced 3 weeks before the end of the experiment by subcutaneous injections of talc (magnesium silicate) in one-half of each group. The success of ovariectomy was verified at necropsy by the atrophy of uterine horns. Inflammation, oleuropein or olive oil intakes did not have any uterotrophic activity, as they had had no effect on uterus weight. The plasma concentration of alpha-1-acid glycoprotein (an indicator of inflammation) was increased in OVX rats with inflammation. With regard to bone variables, osteopenia in OVX was exacerbated by inflammation, as shown by a decrease in metaphyseal and total femoral mineral density. Both oleuropein and olive oil prevented this bone loss in OVX rats with inflammation. At necropsy, oleuropein and olive oil consumption had had no effect on plasma osteocalcin concentrations (marker of bone formation) or on urinary deoxypyridinoline excretion (marker of bone resorption). In conclusion, oleuropein and olive-oil feeding can prevent inflammation-induced osteopenia in OVX rats. Topics: Animals; Anti-Infective Agents; Biomarkers; Bone Density; Bone Diseases, Metabolic; Bone Resorption; Dietary Fats, Unsaturated; Female; Inflammation; Iridoid Glucosides; Iridoids; Olive Oil; Organ Size; Orosomucoid; Osteogenesis; Ovariectomy; Plant Oils; Pyrans; Rats; Rats, Wistar; Uterus | 2004 |
A genipin-crosslinked gelatin membrane as wound-dressing material: in vitro and in vivo studies.
A naturally occurring crosslinking agent (genipin) was used in this study to crosslink gelatin hydrogel to develop a wound-dressing membrane. The study was to investigate the in vitro characteristics of the genipin-crosslinked gelatin membrane. The glutaraldehyde-crosslinked counterpart, at a similar crosslinking degree, was used as control. Additionally, an in vivo experiment was undertaken to study the wound healings covered with the glutaraldehyde- and genipin-crosslinked dressings in a rat model. The in vitro results obtained suggested that crosslinking of gelatin membranes with glutaraldehyde or genipin may produce distinct crosslinking structures. The differences in crosslinking structure can significantly affect the mechanical property, water-vapor-transmission rate, swelling ratio, degradation against enzyme and cellular compatibility of the crosslinked membranes. In the in vivo study, it was found that the degree of inflammatory reaction for the wound treated with the genipin-crosslinked dressing was significantly less severe than that covered with the glutaraldehyde-crosslinked dressing throughout the entire course of the study. Additionally, the healing rate for the wound treated with the genipin-crosslinked dressing was notably faster than its glutaraldehyde-crosslinked counterpart. Topics: Animals; Bandages; Biocompatible Materials; Cell Line; Cross-Linking Reagents; Fibroblasts; Gelatin; Glutaral; Humans; Inflammation; Iridoid Glycosides; Iridoids; Male; Membranes, Artificial; Microscopy, Electron, Scanning; Pyrans; Rats; Rats, Wistar; Tensile Strength; Water; Wound Healing; Wounds and Injuries | 2003 |