iridoids has been researched along with Hyperinsulinism* in 2 studies
2 other study(ies) available for iridoids and Hyperinsulinism
Article | Year |
---|---|
Genipin ameliorates age-related insulin resistance through inhibiting hepatic oxidative stress and mitochondrial dysfunction.
Insulin resistance (IR) increases with age and plays a key role in the pathogenesis of type 2 diabetes mellitus. Oxidative stress and mitochondrial dysfunction are supposed to be major factors leading to age-related IR. Genipin, an extract from Gardenia jasminoides Ellis fruit, has been reported to stimulate insulin secretion in pancreatic islet cells by regulating mitochondrial function. In this study, we first investigated the effects of genipin on insulin sensitivity and the potential mitochondrial mechanisms in the liver of aging rats. The rats were randomly assigned to receive intraperitoneal injections of either 25mg/kg genipin or vehicle once daily for 12days. The aging rats showed hyperinsulinemia and hyperlipidemia, and insulin resistance as examined by the decreased glucose decay constant rate during insulin tolerance test (kITT). The hepatic tissues showed steatosis and reduced glycogen content. Hepatic malondialdehyde level and mitochondrial reactive oxygen species (ROS) were higher, and levels of mitochondrial membrane potential (MMP) and ATP were lower as compared with the normal control rats. Administration of genipin ameliorated systemic and hepatic insulin resistance, alleviated hyperinsulinemia, hyperglyceridemia and hepatic steatosis, relieved hepatic oxidative stress and mitochondrial dysfunction in aging rats. Furthermore, genipin not only improved insulin sensitivity by promoting insulin-stimulated glucose consumption and glycogen synthesis, inhibited cellular ROS overproduction and alleviated the reduction of levels of MMP and ATP, but also reversed oxidative stress-associated JNK hyperactivation and reduced Akt phosphorylation in palmitate-treated L02 hepatocytes. In conclusion, genipin ameliorates age-related insulin resistance through inhibiting hepatic oxidative stress and mitochondrial dysfunction. Topics: Adenosine Triphosphate; Age Factors; Aging; Animals; Antioxidants; Cell Line; Dose-Response Relationship, Drug; Enzyme Activation; Fatty Liver; Hepatocytes; Hyperinsulinism; Hyperlipidemias; Hypoglycemic Agents; Insulin Resistance; Iridoids; JNK Mitogen-Activated Protein Kinases; Liver; Male; Malondialdehyde; Membrane Potential, Mitochondrial; Mitochondria, Liver; Oxidative Stress; Palmitic Acid; Phosphorylation; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species | 2013 |
Preventive effect of geniposide on metabolic disease status in spontaneously obese type 2 diabetic mice and free fatty acid-treated HepG2 cells.
Accumulation of visceral fat induces various symptoms of metabolic syndrome such as insulin resistance and abnormal glucose/lipid metabolism and eventually leads to the onset of ischemic cerebrovascular diseases. Geniposide, which is iridoid glycoside from the fruit of Gardenia jasminoides ELLIS, is recognized as being useful against hyperlipidemia and fatty liver. In order to clarify the effect of geniposide on metabolic disease-based visceral fat accumulation and the relevant molecular mechanism, experiments were performed in spontaneously obese Type 2 diabetic TSOD mice and the free fatty acid-treated HepG2 cells. In the TSOD mice, geniposide showed suppression of body weight and visceral fat accumulation, alleviation of abnormal lipid metabolism and suppression of intrahepatic lipid accumulation. In addition, geniposide alleviated abnormal glucose tolerance and hyperinsulinemia, suggesting that geniposide has an insulin resistance-alleviating effect. Next, in order to investigate the direct effect of geniposide on the liver, the effect on the free fatty acid-treated HepG2 fatty liver model was investigated using genipin, which is the aglycone portion of geniposide. Genipin suppressed the intracellular lipid accumulation caused by the free fatty acid treatment and also significantly increased the intracellular expression of a fatty acid oxidation-related gene (peroxisomal proliferator-activated receptor: PPARĪ±). From these results, it was confirmed that geniposide has an anti-obesity effect, an insulin resistance-alleviating effect and an abnormal lipid metabolism-alleviating effect, and the metabolite genipin shows a direct effect on the liver, inducing expression of a lipid metabolism-related gene as one of its molecular mechanisms. Topics: Adipose Tissue; Animals; Anti-Obesity Agents; Body Weight; Diabetes Mellitus, Type 2; Drug Evaluation, Preclinical; Fatty Acids, Nonesterified; Fatty Liver; Gardenia; Glucose Intolerance; Hep G2 Cells; Humans; Hyperinsulinism; Hypoglycemic Agents; Insulin Resistance; Iridoids; Lipid Metabolism; Liver; Male; Metabolic Diseases; Metabolic Syndrome; Mice; Mice, Obese; Obesity; Phytotherapy; Plant Preparations | 2011 |