iridoids and Gout

iridoids has been researched along with Gout* in 2 studies

Other Studies

2 other study(ies) available for iridoids and Gout

ArticleYear
Loganin Alleviates Gout Inflammation by Suppressing NLRP3 Inflammasome Activation and Mitochondrial Damage.
    Molecules (Basel, Switzerland), 2021, Feb-18, Volume: 26, Issue:4

    Gout is a type of inflammatory arthritis caused by the deposition of monosodium uric acid (MSU) crystals in tissues. The etiology of gout is directly linked to the NLRP3 inflammasome, since MSU crystals are NLRP3 inflammasome activators. Therefore, we decided to search for a small-molecule inhibitor of the NLRP3 inflammasome for the prevention of gout inflammation. We found that loganin suppressed MSU crystals-induced caspase-1 (p20) and interleukin (IL)-1β production and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) specks formation in mouse primary macrophages, showing its ability to inhibit the NLRP3 inflammasome. In an air pouch inflammation model, oral administration of loganin to mice prevented MSU crystals-induced production of mature IL-1β and IL-18 in air pouch exudates, resulting in decreased neutrophil recruitment. Furthermore, oral administration of loganin suppressed MSU crystals-induced gout inflammation in a mouse foot gout model, which was accompanied by the inhibition of the NLRP3 inflammasome. Loganin blocked de novo synthesis of mitochondrial DNA in air pouches and foot tissues injected with MSU crystals. Consistently, loganin prevented MSU crystals-induced mitochondrial damage in macrophages, as it increased mitochondrial membrane potential and decreased the amount of mitochondrial reactive oxygen species. These data demonstrate that loganin suppresses NLRP3 inflammasome activation by inhibiting mitochondrial stress. These results suggest a novel pharmacological strategy to prevent gout inflammation by blocking NLRP3 inflammasome activation and mitochondrial dysfunction.

    Topics: Administration, Oral; Animals; Cells, Cultured; Disease Models, Animal; DNA, Mitochondrial; Gout; Inflammasomes; Inflammation; Iridoids; Macrophages; Male; Mice, Inbred C57BL; Mitochondria; NLR Family, Pyrin Domain-Containing 3 Protein; Uric Acid

2021
Olea europaea leaf (Ph.Eur.) extract as well as several of its isolated phenolics inhibit the gout-related enzyme xanthine oxidase.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2011, May-15, Volume: 18, Issue:7

    In Mediterranean folk medicine Olea europaea L. leaf (Ph.Eur.) preparations are used as a common remedy for gout. In this in vitro study kinetic measurements were performed on both an 80% ethanolic (v/v) Olea europaea leaf dry extract (OLE) as well as on nine of its typical phenolic constituents in order to investigate its possible inhibitory effects on xanthine oxidase (XO), an enzyme well known to contribute significantly to this pathological process. Dixon and Lineweaver-Burk plot analysis were used to determine K(i) values and the inhibition mode for the isolated phenolics, which were analysed by RP-HPLC for standardisation of OLE. The standardised OLE as well as some of the tested phenolics significantly inhibited the activity of XO. Among these, the flavone aglycone apigenin exhibited by far the strongest effect on XO with a K(i) value of 0.52 μM. In comparison, the known synthetic XO inhibitor allopurinol, used as a reference standard, showed a K(i) of 7.3 μM. Although the phenolic secoiridoid oleuropein, the main ingredient of the extract (24.8%), had a considerable higher K(i) value of 53.0 μM, it still displayed a significant inhibition of XO. Furthermore, caffeic acid (K(i) of 11.5 μM; 1.89% of the extract), luteolin-7-O-β-D-glucoside (K(i) of 15.0 μM; 0.86%) and luteolin (K(i) of 2.9 μM; 0.086%) also contributed significantly to the XO inhibiting effect of OLE. For oleuropein, a competitive mode of inhibition was found, while all other active substances displayed a mixed mode of inhibition. Tyrosol, hydroxytyrosol, verbascoside, and apigenin-7-O-β-D-glucoside, which makes up for 0.3% of the extract, were inactive in all tested concentrations. Regarding the pharmacological in vitro effect of apigenin-7-O-β-D-glucoside, it has to be considered that it is transformed into the active apigenin aglycone in the mammalian body, thus also contributing substantially to the anti-gout activity of olive leaves. For the first time, this study provides a rational basis for the traditional use of olive leaves against gout in Mediterranean folk medicine.

    Topics: Allopurinol; Animals; Apigenin; Chromatography, High Pressure Liquid; Dose-Response Relationship, Drug; Enzyme Inhibitors; Gout; Iridoid Glucosides; Iridoids; Medicine, Traditional; Olea; Phenols; Plant Extracts; Plant Leaves; Plants, Medicinal; Pyrans; Uric Acid; Xanthine Oxidase

2011